Úvodní strana  >  Články  >  Vzdálený vesmír  >  Gravitační vlny potvrzeny
Michal Hron Vytisknout článek

Gravitační vlny potvrzeny

LIGO detekoval gravitační vlny ze slučujících se černých děr.
Autor: LIGO, NSF, Aurore Simonnet (Sonoma State U.)

Sto let po jejich teoretickém předpovězení, oznámilo vědecké pracoviště LIGO úspěšné pozorování gravitačních vln. Tým vědců zaznamenal zvuk způsobený kolizí dvou černých děr. Toto pozorování naplinilo poslední z předpovědí vycházející z obecné teorie relativity a otevírá nové možnosti výzkumu jevů souvisejících s především posledními fázemi životních stádií hvězd.

Pozorování oznámené ve čtvrtek 11. února 2016 na tiskové konferenci NSF popisuje záznam instrumentu LIGO z 14. září 2015. Bylo zaznamenáno zčeření časoprostoru kolizí dvou černých děr, každá o hmotnosti okolo třiceti hmotností Slunce. K pozorované události došlo před více než miliardou let. Interpretace záznamu, který je dlouhý pouhý zlomek sekundy, vypráví příběh dvou objektů, které kolem sebe začnou obíhat rychlostí třiceti oběhů za sekundu, postupně zrychlují až na hodnotu 250 oběhů za sekundu, až nakonec dojde ke kolizi a jejich splynutí do jediné rotující, supermasivní černé díry. Pro krátký moment tento jev produkoval více energie než světlo všech hvězd vesmíru.

Vědecké zařízení, které objev uskutečnilo, nese název LIGO (Laser Interferometer Gravitational-Wave Observatory) je společným projektem iniciovaným MIT a Caltech s participací celkem patnácti států a 83 institucí. Hlavní součástí projektu jsou dvě zařízení umístěná USA (Livingston, Louisiana; Hanford, Washington), která pracují dohromady jako jeden instrument. Oba pozorovací instrumenty sestávají z centrální budovy s detektorem, ze které vychází dva laserové paprsky ve dvou směrech svírajících pravý úhel. Každý z těchto paprsků putuje vlastním čtyřkilometrovým vakuovým tunelem, který je ukončený zrcadlem, odrážející paprsek zpátky ke svému zdroji. Oba dva paprsky se po návratu do centrální budovy vzájemně vyruší. Pokud ovšem časoprostorem prochází gravitační vlna, jeden z vakuových tunelů se prodlužuje, zatímco druhý se zkracuje. To způsobí, že dva laserové paprsky již nejsou perfektně srovnané a nedojde k jejich vyrušení.

Video: Princip interferometru LIGO

Einstein popsal v obecné teorii relativity situaci dvou, vzájemně se obíhajících černých děr. Předpovídá, že černé díry budou ztrácet energii vyzařováním gravitačních vln. V důsledku toho se budou po miliardy let pomalu přibližovat až se přiblíží natolik, že v okamžiku dojde k ohromnému zrychlení oběhové rychlosti, a nakonec jejich sloučení. Jejich maximální rychlost by měla dosáhnout až poloviny rychlosti světla. Při jejich sloučení je část jejich hmoty přeměněna v energii, která je uvolněna jako poslední silný poryv gravitačních vln. Tento poslední poryv byl právě to, co napozorovaly instrumenty LIGO.

Video: Splynnutí dvou černých děr
(viz také Astronomický snímek dne)

Gravitační vlny byly nepřímo potvrzeny již v sedmdesátých a osmdesátých letech a to díky pozorování binárního pulzaru PSR 1913+16, jehož složky se vzájemně přibližovaly, což odpovídalo Einsteinovým teoriím. Pulsar, obíhající neutronovou hvězdu, vyzařoval energie v podobě gravitačních vln, což způsobovalo jeho postupné přibližování k neutronové hvězdě. Gravitační vlny, ovšem tehdy ještě nebyly napozorovány.  Důležitost tohoto objevu potvrzuje jeho ocenění Nobelovou cenou v roce 1993.

Instrumenty LIGO se o tento objev pokoušely už mezi lety 2002 až 2010, tehdy ale k napozorování nedošlo. Po několikaleté odstávce a modernizaci vybavení, které výrazně zvýšilo jejich citlivost, bylo pozorování v září roku 2015 znovu obnoveno. Zanedlouho po obnovení provozu s novým vybavením byl objev na světe. Protože detektor v Louisianě zaznamenal tuto událost o několik milisekund dříve, bylo možné tvrdit, že zdroj gravitační vlny byl někde na jižní obloze.

Krátce po naměření fenoménu v září 2015 instrumenty zaznamenaly podobný, slabší signál, patrně rovněž produkovaný černou dírou. V průběhu prvního běhu modernizovaného systému LIGO byly zaznamenány dokonce celkem čtyři události. Druhý běh bude spuštěn letos v létě a vědci opět čekají úspěšná měření. Navíc, na podzim dojde ke spuštění podobného evropského zařízení (Advanced Virgo) v Itálii. Plány zapojit se do pozorování gravitačních vln má i Indie a Japonsko. Teď, když jsou gravitační vlny definitivně potvrzené, dá se předpokládat, že se o jejich detekci a použití pro porozumění kosmologických jevů bude pokoušet více vědeckých pracovišť.

Zdroje gravitačních vln detekovaných aparaturou LISA Autor: Airbus Defence and Space
Zdroje gravitačních vln detekovaných aparaturou LISA
Autor: Airbus Defence and Space
Na stole jsou ale i plány pro ambicióznější projekty. V lednu 2016 se po necelém roce putování na své místo dostala družice LISA Pathfinder, která testuje klíčové technologie pro budoucí misi eLISA. eLisa je mise, jejíž vypuštění je plánováno na rok 2034, sestávající ze tří jednotek vzdálených milion kilometrů, které budou detekovat gravitační vlny narušující laserové paprsky mezi jednotlivými družicemi.

Objev gravitačních vln je nádhernou ukázkou vědecké metody v praxi. Myšlenka gravitačních vln si prošla celou cestu od teoretické předpovědi až k experimentálnímu potvrzení. Nejprve bylo spočítáno, co by mělo být detekovatelné a jak by podle modelu mělo úspěšné pozorování vypadat. Byl navržen experiment, pro který  byla vyvinuta vědecká aparatura, která po letech vývoje dosáhla potřebné přesnosti. V poslední fázi byl jev úspěšně napozorován.

Význam objevu gravitačních vln je triumfem vědecké metody, potvrzením správnosti obecné teorie relativity a příslibem nového typu astronomických pozorování do budoucna. Potvrzení gravitačních vln otevírá dveře jejich použití pro pozorování astronomických jevů týkajících se zejména konce životního cyklu hvězd: zániky hvězd kvůli kolizím, černým dírám a další kosmické katastrofy doprovázené uvolněním obrovských množství energie.

Zdroje a doporučené odkazy:
[1] Snímek dne NASA z 11. února 2016
[2] Snímek dne NASA z 12. února 2016
[3] Oficiální stránky projektu LIGO
[4] Záznam z konference NSF 11. února 2016 (anglicky)



O autorovi

Michal Hron

Člen Západočeské pobočky České astronomické společnosti. Vyrostl pod kopcem s rokycanskou Hvězdárnou. Zapadl do kolektivu kroužku hvězdárny v Plzni, kde se stal jedním z pravidelných účastníků letního pozorovacího praktika. V Plzni později dobrovolnická práce přešla v částečný úvazek. Na možnost rozvíjet astronomii jako koníčka dostal i při studijních pobytech v USA. Obloha z Mauna Kea nebo Yosemitského národního parku patří mezi nejsilnější vzpomínky. Podílel se na ustanovení Manětínské oblasti tmavé oblohy a pravidelně pomáhá při organizaci akcí pro veřejnost. Dokončuje studium na Anglo-Americké Vysoké škole v Praze. Navštivte Stránky autora.

Štítky: LIGO, Gravitační vlny, LISA Pathfinder, ELISA


35. vesmírný týden 2025

35. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 25. 8. do 31. 8. 2025. Měsíc po novu se koncem týdne objeví na večerní obloze. Ráno můžeme pozorovat všechny planety kromě Marsu. Aktivita Slunce se možná zvýší. SpaceX se chystá k 10. testu Super Heavy Starship. První stupeň Falconu 9 se chystá k 30. znovupoužití. Tato raketa má letos za sebou již více než 100 startů a v uplynulém týdnu vynesla i vojenský miniraketoplán X-37b a nákladní loď Dragon na misi CRS-33 k ISS. Před 50 lety zazářila v souhvězdí Labutě poměrně jasná nová hvězda, nova V1500 Cygni.

Další informace »

Česká astrofotografie měsíce

Temná mlhovina Barnard 150

Titul Česká astrofotografie měsíce za červenec 2025 obdržel snímek „Temná mlhovina Barnard 150“, jehož autorem je astrofotograf Václav Kubeš       Dávno, opravdu dávno již tomu. Někdy v době, kdy do Evropy začali pronikat Slované a začala se formovat Velkomoravská říše, v době, kdy Frankové

Další informace »

Poslední čtenářská fotografie

IC 1396 Sloní chobot

IC 1396 je veľká emisná hmlovina v súhvezdí Cefea. Nachádza sa pod spojnicou hviezd alfa a zéta Cephei a je v nej aj premenná hviezda Erakis. Hmlovina zaberá oblasť s priemerom niekoľko stoviek svetelných rokov a jej svetlo k nám letí asi 3 000 rokov. Na nočnej oblohe je jej zdanlivý priemer desaťkrát väčší ako priemer Mesiaca v splne, čo je 170´ (5°). Má celkovú magnitúdu 3,0, ale je taká roztiahnutá, že voľným okom nemáme šancu ju vidieť. Hmotnosť hmloviny je odhadovaná na 12 000 hmotností Slnka. Hmlovinu vzbudzuje k žiareniu najmä veľmi hmotná a veľmi mladá hviezda HD 206267 v strede oblasti. Hviezdu obklopujú ionizované mraky vytvárajúce okolo nej vo vzdialenosti 80 až 130 svetelných rokov prstencový útvar. Sú to zvyšky molekulárneho mraku, z ktorého sa zrodila hviezda HD 206267 a ďalšie hviezdy v tejto oblasti, ktoré spolu tvoria hviezdokopu s označením Tr37. Ďalej od centrálnej hviezdy sú pásma tmavého a chladného materiálu. Známou časťou hmloviny je obrovský tmavý molekulárny mrak pomenovaný hmlovina Sloní chobot. Jej tvar vymodeloval hviezdny vietor z HD 206267. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800 (200/600 F3), Starizona Nexus 0.75x komakorektor, Touptek ATR585M, AFW-M, Touptek LRGBSHO filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C, SVBony 241 power hub, automatizovaná astrobúdka s mojím vlastným OCS (observatory control system). Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop Lights 65x120sec. R, 63x120sec. G, 52x120sec. B, 120x60sec. L, 186x600sec Halpha, 112x600sec.+18x900sec. O3, 144x600sec. S2, master bias, flats, master darks, master darkflats Gain 150, Offset 300. 9.6. až 23.8.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »