Úvodní strana  >  Články  >  Vzdálený vesmír  >  Těžké chemické prvky vznikají díky kosmickým explozím. Anebo ne?

Těžké chemické prvky vznikají díky kosmickým explozím. Anebo ne?

Vznik gama záblesku
Autor: NASA/Swift/Cruz deWilde

Po svém „zrození“ ve Velkém třesku se vesmír skládal převážně z vodíku a několika atomů helia. Jedná se o nejlehčí prvky v periodické tabulce prvků. Během 13,8 miliardy let mezi velkým třeskem a současností vznikly všechny ostatní prvky. Mnoho z těchto těžších prvků vzniklo ve hvězdách procesem jaderné fúze. Tím však vznikly pouze prvky těžké maximálně jako železo. Jak vznikly těžší prvky?

Abychom mohli vysvětlit přítomnost těchto těžších prvků ve vesmíru, je třeba najít jevy s dostatečně velkou energií, která by ty prvky dokázala produkovat. Jedním z typů událostí, které tomu odpovídají, je gama záblesk (GRB) - nejsilnější třída explozí ve vesmíru. Ty mohou vybuchnout při kvintiliónnásobku (10 následované 18 nulami) svítivosti našeho Slunce a předpokládá se, že jsou způsobeny několika typy událostí.

Gama záblesky

GRB lze rozdělit do dvou kategorií: dlouhé záblesky a krátké záblesky. Dlouhé GRB jsou spojeny se zánikem hmotných a rychle rotujících hvězd. Podle této teorie je při kolapsu masivní hvězdy vyvržen materiál do úzkých výtrysků, ve kterých se pohybuje extrémně vysokými rychlostmi.

Krátké záblesky trvají jen několik sekund. Předpokládá se, že jsou způsobeny srážkou dvou neutronových hvězd - kompaktních a hustých „mrtvých“ hvězd. V srpnu 2017 pomohla tuto teorii podpořit významná událost. LIGO a Virgo, dva detektory gravitačních vln v USA, objevily signál, který zřejmě pocházel od dvou neutronových hvězd blížících se ke srážce.

O několik sekund později byl na obloze v souhvězdí Hydry detekován krátký gama záblesk známý jako GRB 170817A, který přicházel ze stejného směru. Po několik týdnů na tuto událost mířily prakticky všechny teleskopy na planetě v rámci bezprecedentního úsilí o studium jejích následků.

Pozorování odhalila v místě GRB 170817A tzv. kilonovu. Při výbuchu kilonovy se sice uvolní energie 1000x silnější než při výbuchu klasické novy (odtud název kilonova), ale stále jde jen o slabší příbuznou výbuchu supernovy. Ještě zajímavější je, že byly nalezeny důkazy, že při explozi vzniklo mnoho těžkých prvků. Autoři studie v časopise Nature, která analyzovala výbuch, ukázali, že tato kilonova zřejmě produkovala dvě různé kategorie trosek neboli ejekcí. Jedna se skládala převážně z lehkých prvků, zatímco druhá z prvků těžkých.

Jak to kilonova zvládla?

Už jsme se zmínili, že jaderná fúze může reálně z periodické tabulky produkovat pouze prvky těžké jako železo. Existuje však ještě jeden proces, který by mohl vysvětlit, jak byla kilonova schopna produkovat prvky ještě těžší.

Výtrysk z kolabující hvězdy Autor: NASA Goddard Space Flight Center
Výtrysk z kolabující hvězdy
Autor: NASA Goddard Space Flight Center
Proces záchytu rychlých neutronů neboli r-proces, při kterém jádra těžších prvků než je železo, zachytí v krátkém čase mnoho částic neutronů. Jejich hmotnost pak rychle roste a vznikají mnohem těžší prvky. K tomu, aby r-proces fungoval, jsou však zapotřebí vhodné podmínky: vysoká hustota, vysoká teplota a velký počet dostupných volných neutronů. Ukazuje se, že záblesky gama záření tyto nezbytné podmínky poskytují.

Máme tedy vyhráno? Jsou ve vesmíru těžké prvky díky kilonovám? Splynutí dvou neutronových hvězd, jako bylo to, které způsobilo kilonovou GRB 170817A, je velmi vzácnou událostí. Tak vzácnou, že nemohou být zdrojem hojného výskytu těžkých prvků ve vesmíru. Ale co dlouhé GRB?

Dlouhé gama záblesky

Nedávná studie zkoumala zejména jeden dlouhý záblesk gama, GRB 221009. Ten byl nazván BOAT - nejjasnější záblesk všech dob. Tento GRB byl zachycen jako puls intenzivního záření procházejícího Sluneční soustavou 9. října 2022.

GRB 221009 vyvolal podobnou astronomickou pozorovací kampaň jako zmíněná kilonova. Tento GRB byl 10krát energetičtější než předchozí rekordman a byl tak blízko nás, že byl měřitelný jeho vliv na zemskou atmosféru!  Ten byl srovnatelný s velkou sluneční bouří.

Mezi dalekohledy zkoumajícími následky GRB 221009 byl i vesmírný dalekohled Jamese Webba (JWST). Ten pozoroval GRB zhruba šest měsíců po jeho explozi. Data, která JWST shromáždil, ukázala, že navzdory mimořádné jasnosti, byl GRB 221009 způsoben výbuchem průměrné supernovy.

Už předchozí pozorování jiných dlouhých GRB ukázala, že neexistuje žádný vztah mezi jasností GRB a velikostí s ním spojené exploze supernovy. Zdá se, že GRB 221009 není výjimkou.

Tým JWST rovněž odvodil počet těžkých prvků vzniklých během exploze tohoto GRB. Nenašli žádné náznaky prvků produkovaných r-procesem. Je to překvapivý závěr, protože teoreticky se předpokládá, že jasnost dlouhého GRB souvisí s podmínkami v jeho jádře, nejspíše černé díře. U velmi jasných událostí - zejména u tak extrémních jako byl GRB 221009 – se podmínky vhodné pro vznik r-procesu očekávaly.

Tato zjištění vráží klín do obecně přijímané hypotézy. Záblesky záření gama nemusí být očekávaným rozhodujícím zdrojem těžkých prvků ve vesmíru.

Zdroje a doporučené odkazy:
[1] The universe



O autorovi

Petr Sobotka

Petr Sobotka

Petr Sobotka je od r. 2014 autorem Meteoru - vědecko-populárního pořadu Českého rozhlasu. 10 let byl zaměstnancem Astronomického ústavu AV ČR v Ondřejově. Je tajemníkem České astronomické společnosti. Je nositelem Kvízovy ceny za popularizaci astronomie 2012. Členem ČAS je od roku 1995.

Štítky: Supernova, Chemické prvky, Gama záblesk


19. vesmírný týden 2025

19. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 5. 5. do 11. 5. 2025. Měsíc po první čtvrti dorůstá k úplňku. Večer je nízko nad obzorem Jupiter a výše najdeme Mars procházející Jesličky. Ráno září u obzoru jasná Venuše a je zde i slabý Saturn. Aktivita Slunce je střední, ale potěší nyní největší skvrna roku 2025. Nastává maximum roje Éta Aquarid. Evropská raketa Vega-C vynesla družici Biomass pro výzkum výměny oxidu uhličitého mezi lesy a atmosférou. Raketa Atlas V vynesla první operační družice sítě Kuiper. Falcon 9 nyní dokáže vynést až 29 Starlinků V2 mini.

Další informace »

Česká astrofotografie měsíce

Simeis 147

Titul Česká astrofotografie měsíce za duben 2025 obdržel snímek „Simeis 147- Spaghetti nebula“, jehož autorem je astrofotograf Pavel Pech     „Spaghetti nebula“ – co se skrývá za tímto pojmem? Možná se nám vybaví „Spaghetti western“, jenž se stal filmovým pojmem, byť trochu

Další informace »

Poslední čtenářská fotografie

M13

Messier 13 alebo M13 (označovaná aj NGC 6205 a niekedy nazývaná Veľká guľová hviezdokopa v Herkulesovi, Herkulova guľová hviezdokopa alebo Veľká Herkulova hviezdokopa) je guľová hviezdokopa pozostávajúca z niekoľkých stoviek tisíc hviezd v súhvezdí Herkules. Messier 13 objavil Edmond Halley v roku 1714 a Charles Messier ho 1. júna 1764 zaradil do svojho zoznamu objektov, ktoré si nemožno mýliť s kométami; Messierov zoznam vrátane Messiera 13 sa nakoniec stal známym ako Messierov katalóg. Nachádza sa v pravej elevácii 16h 41,7m, deklinácia +36° 28'. Messier 13 je astronómami často opisovaný ako najúžasnejšia guľová hviezdokopa viditeľná pre severných pozorovateľov. M13 má priemer asi 145 svetelných rokov a skladá sa z niekoľkých stoviek tisíc hviezd, pričom odhady sa pohybujú od približne 300 000 do viac ako pol milióna. Najjasnejšou hviezdou v kope je červený obor, premenná hviezda V11, známa aj ako V1554 Herculis, so zdanlivou vizuálnou magnitúdou 11,95. M13 je od Zeme vzdialená 22 200 až 25 000 svetelných rokov a guľová hviezdokopa je jednou z viac ako stovky hviezdokôp, ktoré obiehajú okolo stredu Mliečnej cesty. Posolstvo z Areciba z roku 1974, ktoré obsahovalo zakódované informácie o ľudskej rase, DNA, atómových číslach, polohe Zeme a ďalšie informácie, bolo vyslané z rádioteleskopu observatória Arecibo smerom k Messieru 13 ako pokus o kontakt s potenciálnymi mimozemskými civilizáciami v tejto hviezdokope. M13 bola vybraná preto, lebo išlo o veľkú, relatívne blízku hviezdnu kopu, ktorá bola dostupná v čase a na mieste ceremónie. Hviezdokopa sa bude počas tranzitu pohybovať vesmírom; názory na to, či bude v čase príletu správy schopná prijať správu, sa rôznia. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGBSHO filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 110x60 sec. Lights LRGB na jednotlivý kanál , master bias, 80 flats, master darks, master darkflats 28.4.2025 až 1.5.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »