Související stránky k článku Gravitační čočky potvrzují zrychlující se expanzi vesmíru

Měření rychlosti současného rozpínání vesmíru neodpovídá hodnotě, která byla očekávána na základě toho, jak vesmír vypadal krátce po Velkém třesku před 13 miliardami roků. Astronomové na základě využití Hubbleova kosmického teleskopu HST podstatně snížili pravděpodobnost, že tato nesrovnalost je určena chybně. Neshoda panuje mezi současnou rychlostí rozpínání vesmíru změřenou pomocí HST a rychlostí rozpínání vesmíru změřenou družicí Planck provozovanou ESA, která studovala podmínky panující v mladém vesmíru zhruba 380 000 roků po Velkém třesku.

Astronomové využili Hubbleův kosmický teleskop HST a evropskou astrometrickou družici Gaia k uskutečnění nejpřesnějších měření rychlosti rozpínání vesmíru od doby, kdy byla poprvé téměř před sto roky vypočítána hodnota Hubbleovy konstanty. Výsledky publikované v časopise Astrophysical Journal poskytly další důkazy o nesouladu mezi rychlostí rozpínání blízkého okolního vesmíru a vesmíru v počátcích jeho existence.

Z nové studie vzniklé na základě dat z kosmické observatoře NASA s názvem Chandra X-ray Observatory a astronomické družice XMM-Newton Evropské kosmické agentury ESA vyplývá, že se temná energie měnila v průběhu kosmického věku. Umělecká ilustrace v úvodu článku pomáhá vysvětlit, jak astronomové vypátrali účinky temné energie v období asi jedné miliardy roků po Velkém třesku na základě určení vzdálenosti kvasarů – rychle rostoucích černých děr, které svítí mimořádně jasně. Nové výsledky ukázaly, že vliv temné energie na rozpínání vesmíru v jeho mladém věku byl jiný než dnes.

Astronomové využívající k pozorování Hubbleův kosmický teleskop HST uskutečnili nejpřesnější měření rychlosti rozpínání vesmíru od jejího prvního určení před téměř jedním stoletím. Neobvyklé závěry přinutily astronomy vzít v úvahu, že možná objevili důkazy poněkud neočekávaného fungování vesmíru. Nejnovější objevy z HST ukazují, že vesmír expanduje v současné době rychleji, než bylo předpokládáno na základě jeho pozorované trajektorie krátce po Velkém třesku.

Podstata tmavej hmoty, ktorá podľa súčasných poznatkov tvorí až 80% vesmíru, zostáva stále zahalená v tajomstvách. Nedostatok experimentálnych dôkazov, ktoré by boli nám umožnili stotožniť ju nejakou elementárnou časticou predpovedanou teoretikmi, podobne ako tomu bolo v nedávnom objave gravitačných vĺn, na základe zlučovania dvoch čiernych dier (s hmotsnoťou 30-krát väčšou ako je hmotnosť Slnka). Tento objav znovu podnietil záujem o možnosť, že tmavá hmota by mohla mať formu prvotných čiernych dier s hmotnosťou medzi 10 až 1000-násobkom hmotnosti Slnka.

Nové výpočty nasvědčují tomu, že vesmír by mohl být až o 2 miliardy roků mladší, než astronomové doposud předpokládali. Tyto závěry vyplývají na základě dalších pozorování a výpočtů publikovaných v letošním roce, které zkracují jeho věk o stovky miliónů roků od dnes udávaného stáří vesmíru. A obrovské rozdíly v odhadech astronomů – tyto nové výpočty by mohly snížit věk až o několik miliard roků – odráží rozdílné přístupy k velkému problému, kterým je výpočet skutečného stáří vesmíru.

Astronomové předpokládali po desetiletí, že se vesmír rozpíná stejnou rychlostí ve všech směrech. Avšak nová studie zpracovaná na základě dat z rentgenové družice XMM-Newton (ESA), rentgenové observatoře Chandra X-ray Obsevatory (NASA) a dřívějších pozorování německé družice ROSAT vedou k závěru, že tyto klíčové předpoklady současné kosmologie mohou být chybné.

Hubbleův vesmírný dalekohled nabídl pohled na podstatu exoplanety Fomalhaut b.
Domnělá planeta za hranicemi Sluneční soustavy zdánlivě zmizela z dohledu. Astronomové se nyní především domnívají, že zcela dospělá planeta ve skutečnosti nikdy neexistovala. Hubbleův vesmírný teleskop HST místo toho pozoroval expandující oblak velmi jemných prachových částic vytvořených při obří kolizi mezi dvěma ledovými tělesy velikosti asteroidu obíhajícími kolem jasné hvězdy Fomalhaut, která je od Země vzdálena 25 světelných roků.

Hubbleova konstanta určuje současnou rychlost rozpínání vesmíru a hraje stěžejní roli v kosmologii: může být využita ke stanovení velikosti a stáří vesmíru, stejně tak může posloužit jako dokonalý nástroj pro interpretaci pozorování vesmírných objektů a jevů. Mezinárodní tým astronomů použil kombinaci detekce gravitačních vln a rádiových pozorování úkazu GW170817, kdy došlo ke splynutí dvou neutronových hvězd pozorovaného v roce 2017, a to k určení mnohem přesnější hodnoty Hubbleovy konstanty.

Komety tráví většinu svého života ve velkých vzdálenostech od mateřských hvězd; během tohoto času zůstává složení jejich nitra relativně nezměněno. Pozorování komet mohou poskytnout přímý pohled na chemické složení, které získaly v průběhu svého zrodu v období formování planet. Na základě pozorování pomocí radioteleskopu ALMA (Atacama Large Millimeter/submillimeter Array) a Hubbleova vesmírného teleskopu HST dva týmy astronomů zjistily, že plyny unikající z komety 2I/Borisov, první pozoruhodně aktivní mezihvězdné komety objevené ve Sluneční soustavě, obsahuje nezvykle vysoké množství oxidu uhelnatého.

Pro pozorovatele noční oblohy, ani širší veřejnost asi není třeba tuto kometu představovat a řada lidí také zaznamenala během dubna nemilou zprávu, že kometa se rozpadla. Vzhledem k tomu, že signály o rozpadu komety se objevily již na začátku dubna, očekávali bychom, že se mezitím její trosky rozdrolily a kometa zmizela z oblohy. U této komety se to zatím nestalo. Jak ukazují nejdetailnější možné záběry dění v hlavě komety z Hubbleova vesmírného dalekohledu, jedním z důvodů delší životnosti komety je, že se rozpadla kromě drobotiny i na několik větších jader.

24. dubna 1990 odstartoval na svou misi STS-31 raketoplán Discovery s velmi vzácným nákladem, vesmírným dalekohledem HST. Již v 70. letech 20. století začaly společně evropská ESA a americká NASA plánovat vypuštění dalekohledu na oběžnou dráhu kolem Země. Dalekohled byl nakonec vypuštěn až na sklonku století a v důsledku nepřesně vybroušeného zrcadla byly zpočátku jeho obrázky neostré. Po opravě v roce 1993 však pracuje naplno a naprosto předčil očekávání do něj vložená. Jedná se o vědecky nesmírně cenný přístroj, ale jeho přínos je i kulturní, protože krása jeho snímků jej zapsala hluboko do mysli běžné veřejnosti.

Přehled událostí na obloze a v kosmonautice od 20. 4. do 26. 4. 2020. Měsíc bude v novu. Večer můžeme stále pozorovat velmi jasnou Venuši. Ráno jsou zase seřazeny planety Mars, Saturn a Jupiter. Očekáváme maximum meteorického roje Lyrid. Pozorování doplňují vláčky družic Starlink, přičemž na Floridě se chystá ke startu várka dalších šedesáti. Sojuz MS-15 dopravil zpět na Zemi trojici kosmonautů z ISS. Před 30 lety vypustil raketoplán Discovery vesmírný dalekohled HST.

Zdá se, že se vskutku blíží konec cesty mezihvězdného objektu 2I/Borisov – komety, která překonala světelné roky prostoru předtím, než se dostala k možnému zániku ve Sluneční soustavě. Současná data naznačují, že se kometa rozpadá. Nedávná pozorování pomocí Hubbleova kosmického teleskopu HST ukazují, že se kometa rozdělila přinejmenším na dvě části.

Jasný zdroj rentgenového záření v hmotné hvězdokupě na periferii objektu 6dFGS gJ215022.2-055059, což je čočkovitá galaxie nacházející se ve vzdálenosti zhruba 806 milionů světelných roků od Země, je černou dírou střední velikosti. Vyplývá to z nové studie publikované v časopise Astrophysical Journal Letters.

Astronomové zkoumali podstatu velmi jasného a dlouhotrvajícího záblesku gama záření s označením GRB 190114C na základě studia jeho okolního prostředí. Záblesky gama záření jsou nejvíce energetické exploze ve vesmíru vysílající svazek záření v podobě mohutných výtrysků, které se šíří prostorem rychlostí odpovídající 0,99 rychlosti světla. Vznikají v okamžiku, kdy hvězda mnohem hmotnější než Slunce zkolabuje a na konci svého života vytvoří černou díru.

V titulku článku je dosud nejdetailnější pohled na mezihvězdnou kometu 2I/Borisov. Jedná se o výsledek prvního pozorování z kampaně, která byla nachystána pro Hubbleův vesmírný dalekohled (HST). Další takové pozorování je v plánu v lednu 2020. Snímek zachycuje oblast bezprostředně kolem jádra komety, které je zahaleno oblakem prachu a na snímku tedy nemůže být vidět.

Také letos se Hubbleův vesmírný dalekohled zaměřil na velké planety Sluneční soustavy. Snímek planety Jupiter už jsme měli možnost shlédnout 8. srpna 2019. Nyní byl zveřejněn také snímek Saturnu pořízený pomocí širokoúhlého přístroje Wide Field Camera 3. Planeta je na snímku zachycena 20. června 2019, kdy byla k Zemi nejblíže. Přesto ji od nás dělilo propastných 1,36 miliardy kilometrů.

Představte si ohňostroj probíhající jako zpomalený film, který započal explozí před 170 roky a stále ještě pokračuje. Tento typ ohňostroje nebyl zažehnut v zemské atmosféře, ale ve vesmíru velmi hmotnou hvězdou odsouzenou ke zkáze s názvem Eta Carinae, která je větší složkou binárního hvězdného systému. Nové snímky pořízené pomocí Hubbleova kosmického teleskopu HST v oboru ultrafialového záření zachycují expandující plyny vyvržené hvězdou znázorněné červenou, bílou a modrou barvou. Eta Carinae je od Země vzdálena 7 500 světelných roků.

Astronomové objevili prostřednictvím Hubbleova kosmického teleskopu HST, že žlutě zbarvené oblasti na povrchu Europy, druhého Galileovského měsíce podle vzdálenosti od planety Jupiter, jsou ve skutečnosti pokryty chloridem sodným, což je známá kuchyňská sůl. Z objevu, který byl 12. 6. 2019 publikován v časopise Science Advances, vyplývá, že podpovrchový oceán Europy se chemickým složením podobá pozemským oceánům více, než jsme doposud předpokládali.