Úvodní strana  >  Články  >  Sluneční soustava  >  Co je zodpovědné za rozdílnou barvu planet Uran a Neptun?

Co je zodpovědné za rozdílnou barvu planet Uran a Neptun?

Planety Uran a Neptun na fotografiích pořízených sondou Voyager 2
Autor: NASA/JPL-Caltech/B. Jónsson

Mezinárodní tým planetologů pod vedením vědců z University of Oxford uskutečnil analýzu pozorování Uranu a Neptunu v oboru viditelného světla a infračerveného záření prováděných pomocí Hubbleova vesmírného teleskopu HST, dalekohledu NASA s názvem Infrared Telescope Facility (ITF) a dalekohledu Gemini North telescope.

Planeta Uran a sousední Neptun jsou klasifikovány jako ledoví obři jako protiklad k obřím plynným planetám Jupiter a Saturn. Oba ledoví obři mají mnoho společného, přesto Neptun vypadá zřetelně modřejší než jeho planetární soused Uran.

Na základě nového výzkumu profesor Patrick Irwin z University of Oxford a jeho spolupracovníci využili dalekohledy HST, ITF a Gemini North Telescope ke zdokonalení modelu, který popisuje vrstvy aerosolu v atmosférách obou ledových obrů.

Toto je první model umožňující přizpůsobení pozorování odraženého slunečního světla od ultrafialového až po infračervené záření,“ říká Patrick Irwin. „Je to rovněž první vysvětlení odlišnosti viditelného zbarvení planet Uran a Neptun.“

Model, který tým vypracoval, zahrnuje tři vrstvy mlhy na odlišných výškách v atmosféře každé z planet. Prostřední vrstva mlžných částic, přesně nad úrovní kondenzace metanu, jak bylo zjištěno, je hustší na Uranu než na Neptunu, a která právě ovlivňuje pozorované zbarvení obou planet.

Na obou planetách kondenzuje metanový led na částicích v prostřední vrstvě vytvářející spršku metanového sněhu, která přitahuje mlžné částice hlouběji do atmosféry, kde mohou následně podporovat kondenzaci sirovodíku v podobě ledu, vytvářející oddělené hluboké vrstvy v podobě mlhy či oblaků.

Planeta Neptun má mnohem aktivnější turbulentní atmosféru než Uran, což nasvědčuje tomu, že atmosférou Neptunu mnohem efektivněji proniká plynný metan do vrstvy mlhy, kde může kondenzovat na částicích mlhy a vytvářet zmiňovaný sníh.

Toto působení odstraňuje většinu mlhy a udržuje vrstvu mlhy na Neptunu řidší, než je tomu na Uranu, díky čemuž Neptun vypadá modřejší než planeta Uran. Naproti tomu nadbytečná mlha na Uranu dělá planetu stagnující s netečnou atmosférou, což dodává planetě světlejší tóny zbarvení než v případě Neptunu.

Schéma ukazuje tři vrstvy aerosolů v atmosférách planet Uran a Neptun Autor: Gemini Observatory/NOIRLab/NSF/AURA/J. da Silva/NASA/JPL-Caltech/B. Jónsson
Schéma ukazuje tři vrstvy aerosolů v atmosférách planet Uran a Neptun
Autor: Gemini Observatory/NOIRLab/NSF/AURA/J. da Silva/NASA/JPL-Caltech/B. Jónsson
Popis k obrázku: Schéma ukazuje tři vrstvy aerosolů v atmosférách planet Uran a Neptun. Výškové měřítko diagramu reprezentuje tlak nad hodnotou 10 bar. Nejhlubší vrstva (Aerosol-1) je hustá a složená ze směsi ledu sirovodíku a částic vytvářených interakcí atmosfér planet se slunečním zářením. Klíčovou vrstvou, která ovlivňuje barvu, je prostřední vrstva, která obsahuje částice mlhy (Aerosol-2), která je na Uranu hustější než na Neptunu. Patrick Irwin se svými spolupracovníky mají podezření, že na obou planetách metanový led kondenzuje na částicích v této vrstvě, stahující částice hlouběji do atmosféry v podobě spršky metanového sněhu. Protože Neptun má mnohem aktivnější turbulentní atmosféru než Uran, vědci se domnívají, že atmosférou Neptunu mnohem snáze pronikají částice metanu do vrstvy mlhy a vytváří zde metanový sníh. To odstraňuje větší množství mlhy a udržuje ji na Neptunu řidší než na Uranu, což znamená, že modrá barva Neptunu má silnější odstín. Nad oběma těmito vrstvami se prostírá vrstva mlhy (Aerosol-3) podobná spodní vrstvě, avšak mnohem řidší.

Autoři rovněž dokázali, že přítomnost druhé – hlubší vrstvy v modelu – která když ztmavne, by mohla vysvětlovat temné skvrny příležitostně pozorovatelné na Neptunu a velmi sporadicky na Uranu, jako například byla známá Velká tmavá skvrna na Neptunu, kterou pozorovala v roce 1989 kosmická sonda Voyager 2.

Zatímco astronomové si již byli vědomi přítomnosti tmavých skvrn v atmosférách obou planet, nevěděli, jaké vrstvy mlhy způsobily vznik těchto tmavých skvrn a jestli byly způsobeny řídnutím či tmavnutím této vrstvy.

Doufali jsme, že vývoj tohoto modelu nám pomůže porozumět výskytu oblačnosti a vrstev mlhy v atmosférách těchto ledových obrů,“ říká Mike Wong, astronom na University of California, Berkeley. „Vysvětlení barevných rozdílů mezi Uranem a Neptunem byl neočekávaný bonus!

Článek byl publikován v časopise Journal of Geophysical Research: Planets.

Zdroje a doporučené odkazy:
[1] sci-news.com
[2] phys.org

Převzato: Hvězdárna Valašské Meziříčí



O autorovi

František Martinek

František Martinek

Narodil se v roce 1952. Na základní škole se začal zajímat o kosmonautiku, později i o astronomii. V roce 1978 nastoupil na Hvězdárnu Valašské Meziříčí na pozici odborného pracovníka, kde v různých funkcích pracoval až do konce února 2014. Věnoval se především popularizační a vzdělávací činnosti. Od roku 2003 publikuje krátké články o novinkách v astronomii a kosmonautice na stránkách www.astro.cz. I po odchodu do důchodu spolupracuje s valašskomeziříčskou hvězdárnou a podílí se na přípravě obsahu stránek www.astrovm.cz. Ve volném čase se věnuje rekreační turistice.

Štítky: HST, Uran a Neptun, Ledoví obři


19. vesmírný týden 2025

19. vesmírný týden 2025

Přehled událostí na obloze a v kosmonautice od 5. 5. do 11. 5. 2025. Měsíc po první čtvrti dorůstá k úplňku. Večer je nízko nad obzorem Jupiter a výše najdeme Mars procházející Jesličky. Ráno září u obzoru jasná Venuše a je zde i slabý Saturn. Aktivita Slunce je střední, ale potěší nyní největší skvrna roku 2025. Nastává maximum roje Éta Aquarid. Evropská raketa Vega-C vynesla družici Biomass pro výzkum výměny oxidu uhličitého mezi lesy a atmosférou. Raketa Atlas V vynesla první operační družice sítě Kuiper. Falcon 9 nyní dokáže vynést až 29 Starlinků V2 mini.

Další informace »

Česká astrofotografie měsíce

Simeis 147

Titul Česká astrofotografie měsíce za duben 2025 obdržel snímek „Simeis 147- Spaghetti nebula“, jehož autorem je astrofotograf Pavel Pech     „Spaghetti nebula“ – co se skrývá za tímto pojmem? Možná se nám vybaví „Spaghetti western“, jenž se stal filmovým pojmem, byť trochu

Další informace »

Poslední čtenářská fotografie

M13

Messier 13 alebo M13 (označovaná aj NGC 6205 a niekedy nazývaná Veľká guľová hviezdokopa v Herkulesovi, Herkulova guľová hviezdokopa alebo Veľká Herkulova hviezdokopa) je guľová hviezdokopa pozostávajúca z niekoľkých stoviek tisíc hviezd v súhvezdí Herkules. Messier 13 objavil Edmond Halley v roku 1714 a Charles Messier ho 1. júna 1764 zaradil do svojho zoznamu objektov, ktoré si nemožno mýliť s kométami; Messierov zoznam vrátane Messiera 13 sa nakoniec stal známym ako Messierov katalóg. Nachádza sa v pravej elevácii 16h 41,7m, deklinácia +36° 28'. Messier 13 je astronómami často opisovaný ako najúžasnejšia guľová hviezdokopa viditeľná pre severných pozorovateľov. M13 má priemer asi 145 svetelných rokov a skladá sa z niekoľkých stoviek tisíc hviezd, pričom odhady sa pohybujú od približne 300 000 do viac ako pol milióna. Najjasnejšou hviezdou v kope je červený obor, premenná hviezda V11, známa aj ako V1554 Herculis, so zdanlivou vizuálnou magnitúdou 11,95. M13 je od Zeme vzdialená 22 200 až 25 000 svetelných rokov a guľová hviezdokopa je jednou z viac ako stovky hviezdokôp, ktoré obiehajú okolo stredu Mliečnej cesty. Posolstvo z Areciba z roku 1974, ktoré obsahovalo zakódované informácie o ľudskej rase, DNA, atómových číslach, polohe Zeme a ďalšie informácie, bolo vyslané z rádioteleskopu observatória Arecibo smerom k Messieru 13 ako pokus o kontakt s potenciálnymi mimozemskými civilizáciami v tejto hviezdokope. M13 bola vybraná preto, lebo išlo o veľkú, relatívne blízku hviezdnu kopu, ktorá bola dostupná v čase a na mieste ceremónie. Hviezdokopa sa bude počas tranzitu pohybovať vesmírom; názory na to, či bude v čase príletu správy schopná prijať správu, sa rôznia. Vybavenie: SkyWatcher NEQ6Pro, GSO Newton astrograf 200/800, Baader Mark III. komakorektor, Touptek ATR585M, AFW-M, Touptek LRGBSHO filtre, Gemini EAF focuser, guiding TS Off-axis + PlayerOne Ceres-C. Software: NINA, Astro pixel processor, GraXpert, Pixinsight, Adobe photoshop 110x60 sec. Lights LRGB na jednotlivý kanál , master bias, 80 flats, master darks, master darkflats 28.4.2025 až 1.5.2025 Belá nad Cirochou, severovýchod Slovenska, bortle 4

Další informace »