Související stránky k článku Dalekohled Euclid se vydal zkoumat skrytou hmotu a skrytou energii

Trojice satelitů studujících magnetické pole Země spolehlivě odhalila detaily magnetického pole vytvářeného oceánskými proudy. Čtyři roky shromažďovaly data družice systému Swarm vypuštěné Evropskou kosmickou agenturou ESA, které jsou určeny k mapování magnetického pole Země z nízké polární oběžné dráhy. Přispěly tak ke zmapování tohoto „druhého“ magnetického pole, které nám může například pomoci vypracovat lepší modely týkající se globálního oteplování.

Temná hmota je jedním z největších tajemství současné astrofyziky a kosmologie. Podle názoru astronomů zahrnuje 90 % veškeré hmoty vesmíru, avšak její existence byla prokázána pouze nepřímo a v poslední době se objevily určité pochybnosti o její existenci. Nové výzkumy uskutečněné mezinárodní školou SISSA (Scuola Internazionale Superiore di Studi Avanzati) však odstranily nedávné pochybnosti o přítomnosti temné (skryté) hmoty uvnitř galaxií vyvrácením empirických vztahů na podporu alternativních teorií.

Skupina astronomů pod vedením Andrease Kocha z Lancaster University, U. K. prováděla v poslední době detailní výzkum obsahu chemických prvků v nedávno objevené hvězdokupě Gaia 1. Na obloze se nachází v blízkosti jasné hvězdy Sírius. Výsledky výzkumu publikované 12. září 2017 na arXiv.org poskytly nový pohled na podstatu této nově objevené hvězdokupy.

Naše Galaxie je ve svém bezprostředním okolí obklopena několika desítkami malých satelitních průvodců. Některé vědecké práce poukazují na jejich neobvyklé prostorové uspořádání, jaké nelze jednoduše vysvětlit s pomocí standardního kosmologického modelu. Podobné uspořádání mají i satelity blízké galaxie M31 v Andromedě. Michal Bílek se svými spolupracovníky vysvětlují uspořádání satelitů Mléčné dráhy a M31 jejich dávnou slapovou interakcí. Tento vývojový scénář připouští pouze model postavený na alternativní teorii gravitace.

Závěrečný díl našeho povídání o zajímavostech z konference EWASS 2017 je zde. V první části tohoto dílu si povíme o současných i budoucích misích Evropské vesmírné agentury. Dále si připomeneme historii a přístrojové vybavení Evropské jižní observatoře. Nechybí ani připomínka, že součástí ESO je i Česká republika. Pochopitelně se dotkneme i nejbližší budoucnosti a vylepšení dalekohledů. Pojem astronomická kybernetika, kterým naše ohlédnutí za konferencí ukončíme, je obor úzce spjatý s astronomickým bádáním, protože bez numerických simulací a počítačového zpracování obrovského množství dat se jak současný, tak především budoucí astronomický výzkum neobejde.

Podstata temné (skryté) hmoty, která podle všeho představuje nejméně 23 % hmotnosti a energie vesmíru, je stále ještě jednou z největších neobjasněných záhad současné vědy. Nedostatek experimentálních důkazů, které by umožnily odlišit elementární částice předpověděné teoretiky, stejně jako nedávné odhalení gravitačních vln uvolněných při srážce dvou černých děr (jejich hmotnosti zhruba 30× převyšovaly hmotnost Slunce) pomocí detektorů LIGO (Laser Interferometer Gravitational Wave Observatory) oživilo zájem o možnost, že by temnou hmotu mohly představovat primordiální černé díry o hmotnostech v rozmezí 10 až 1 000 hmotností Slunce.

Bude to vyžadovat více než šest let přípravy. Avšak pokud budou dlouho očekávané stopy života na Europě nalezeny, nově navrhované spojení americko-evropské cesty k tajemnému měsíci planety Jupiter bude stát za to. Plán s názvem „Joint Europa Mission“ (společná mise k Europě) byl představen 24. dubna 2017 ve Vídni (Rakousko) na výročním zasedání European Geoscience Union. Jestliže se na tom obě organizace dohodnou a NASA a Evropská kosmická agentura ESA spojí své síly k uskutečnění plánované mise, její start by mohl být realizován kolem roku 2025.

Vedci simulovali tvorbu malej koncentrácie hmoty, nazývanej halo temnej hmoty, v rámci ktorej sa predpokladá, že vznikajú galaxie ako naša Mliečna dráha. Výzvou tejto simulácie bolo modelovanie galaxií tak malých ako jedna desatina Mliečnej dráhy, a to v objeme tak veľkom, ako je celý náš pozorovateľný vesmír.

Náročné požadavky na elektrický, magnetický a pohonný systém, drsná radiace a přesná planetární navigace jsou jen některé z kritických záležitostí, které musely být splněny, než bylo vše připraveno, aby se meziplanetární sonda Evropské kosmické agentury ESA s názvem Jupiter Icy Moons Explorer – JUICE – mohla přesunout z rýsovacího prkna a začít její výroba. Start sondy je naplánován na rok 2022, přílet k Jupiteru se uskuteční v roce 2029.

Ďalšie dôkazy o existencii temnej hmoty, tajomnej substancii, o ktorej sa predpokladá, že udržuje vesmír pohromade, poskytli kozmológovia z Durham University. Pomocou sofistikovaných techník počítačového modelovania, tím vedcov simuloval tvorbu galaxií za prítomnosti tmavej hmoty, čím bol schopný preukázať, že ich veľkosť a rýchlosť otáčania sú prepojené s ich jasom podobným spôsobom aký pozorovali astronómovia.

Vyvrcholení mise ExoMars 2016 je tu. Dnes, ve středu 19. října, má zkušební modul EDM (Schiaparelli) provést přistávací manévr na povrchu Marsu. Kromě toho se má na oběžnou dráhu planety dostat oběžný modul TGO (Trace Gas Orbiter). V článku najdete nejdůležitější informace k samotnému průběhu přistání a poté i aktuální příspěvky o stavu obou částí této evropské mise, která je předskokanem chystaného vozítka ExoMars 2020.
Aktualizace 21. 10.

Vedci z University of Waterloo zachytili prvý kompozitný obrázok mosta tvoreného temnou hmotou, ktorý spája galaxie dohromady. Tento obrázok kombinuje množstvo jednotlivých snímok, a potvrdzuje predpovede, že galaxie v celom vesmíre sú zviazané prostredníctvom kozmickej siete spojenou s temnou hmotou, ktorá doteraz zostávala nepozorovateľná.

5. září vyšla na světlo světa úžasná novina o objevu modulu Philae na povrchu jádra komety 67P/Čurjumov-Gerasimenko. Od jeho nešťastného přistání v listopadu 2014, kdy zůstal zaklíněn někde mezi skalisky, kladli jsme si tuto základní otázku – „Kde se nachází Philae. A najdeme jej vůbec?“ Určité představy o jeho poloze jsme měli. Díky rádiovému signálu mezi ním a Rosettou se podařilo poměrně přesně určit místo na povrchu, ale pouze v rozmezí desítek až stovek metrů. Samotný detailní snímek nebyl tak úplně náhodně pořízený. Jisté náznaky, kde se Philae nachází, byly zveřejněny už dříve, ovšem tito kandidáti, na kterých mohl být modul vyfotografován, museli počkat na definitivní potvrzení až do zmíněného začátku září. Chtělo to trpělivost a trochu toho štěstí. Přitom dřívější data ho vlastně také ukázala. Pojďme se podívat na příběh, který nám vypráví Laurence O'Rourke, který vedl kampaň vedoucí k nalezení Philae.

Výskumný tím na Rochester Institute of Technology nepripúšťa výzvu akceptovaného štandardného modelu vesmíru a teórie o tom, ako sa galaxie formujú, objasnením ich problematickej štruktúry. Rozsiahla štruktúra v oblasti pólov galaxie – rovina satelitných galaxií na póloch Mliečnej dráhy – sa totiž nachádza v centre roztržiek medzi vedcami, ktorí nesúhlasia s existenciou tmavej hmoty, neviditeľnej hmoty údajne tvoriacej 85% vesmíru.

Pomalu se to blíží. Po více než dvou letech získávání cenných fotografických i vědeckých dat se sonda Rosetta obíhající kometu 67P/Churyumov-Gerasimenko chystá na sestup na její povrch. Ten by měl proběhnout v pátek 30. září.

Nová pozorování naznačují, že v nejvýznamnějším období vzniku galaxií – před deseti miliardami let – byly hmotné galaxie s aktivními procesy formování hvězd dominantně tvořeny běžnou (baryonovou) hmotou. To je však v příkrém kontrastu se současnými galaxiemi, u kterých pozorujeme mnohem významnější vliv záhadné temné hmoty. K tomuto překvapivému výsledku astronomové dospěli na základě pozorování provedených pomocí dalekohledu ESO/VLT. Z výsledků vyplývá, že temná hmota hrála v raném vesmíru méně zásadní úlohu, než dnes. Výzkum byl prezentován ve čtveřici samostatných článků, jeden z nich byl publikován tento týden v prestižním vědeckém časopise Nature.

Chceš vyhrát cestu na kosmodrom Kourou či stáž v ESA? Tak neváhej a přihlas do 15. ledna 2016 svůj nápad z kosmonautiky jako studentský projekt do soutěže Odysseus. Soutěž Odysseus, financovaná Evropskou unií z programu Horizont 2020, si klade za cíl inspirovat mladé lidi z celé Evropy k zapojení do výzkumu vesmíru a nabízí šanci ukázat znalosti v širokém spektru témat spojených s vesmírem, od družic a kosmických sond až k astrobiologii a meziplanetárnímu cestování.

Podstata tmavej hmoty, ktorá podľa súčasných poznatkov tvorí až 80% vesmíru, zostáva stále zahalená v tajomstvách. Nedostatok experimentálnych dôkazov, ktoré by boli nám umožnili stotožniť ju nejakou elementárnou časticou predpovedanou teoretikmi, podobne ako tomu bolo v nedávnom objave gravitačných vĺn, na základe zlučovania dvoch čiernych dier (s hmotsnoťou 30-krát väčšou ako je hmotnosť Slnka). Tento objav znovu podnietil záujem o možnosť, že tmavá hmota by mohla mať formu prvotných čiernych dier s hmotnosťou medzi 10 až 1000-násobkom hmotnosti Slnka.

Vladimír Domček, magisterský student astrofyziky na Masarykově univerzitě, úspěšně absolvoval půlroční pobyt v ESACu, jedné ze složek Evropské vesmírné agentury v Madridu. Během svého pobytu se mu podařilo objevit v nově naměřených rentgenových datech družice XMM-Newton několik mezihvězdných oblaků, pohybujících se v blízkosti aktivního jádra galaxie NGC 985. Jeho objev společně s pozitivní zkušeností ze zahraničí jej motivují nejen k doktorskému studiu, ale také k podpoře svých spolužáků v absolvování podobných evropských projektů.

Štúdia z 28. februára uverejnená v časopise Monthly Notices of the Royal Astronomical Society zachytáva najnovší objav vedcov z Yale univerzity. Zhotovili mapu tmavej hmoty s najväčším rozlíšením aké sa doposiaľ podarilo dosiahnuť. Táto mapa ponúka závažné dôkazy pre existenciu studenej tmavej hmoty – pomalých častíc, ktoré tvoria väčšinu hmoty vo vesmíre.