Související stránky k článku Supermasivní černé díry možná vznikají jinak, než jsme si mysleli

Pomocí radioteleskopu ALMA (Atacama Large Millimeter/submillimeter Array) astronomové odhalili o mnohém vypovídající známky přítomnosti 11 hvězd o malé hmotnosti vznikající v těsné blízkosti pouhých 3 světelných let od zdroje záření Sagittarius A*, který ukrývá supermasivní černou díru v centru naší Galaxie (Mléčné dráhy). Supermasivní černá díra o hmotnosti téměř 4 milióny hmotností Slunce se nachází přibližně 26 000 světelných roků od Země a promítá se do souhvězdí Střelce (Sagittarius).

V posledních dnech nám dalekohled Jamese Webba nabízí doopravdy jeden objev za druhým. V tomto trendu pokračuje i nedávno zveřejněné pozorování prašného disku u nedaleké mladé hvězdy. Je to poprvé, co dalekohled Jamese Webba pozoroval dříve známý prašný disk na daných vlnových délkách v infračervené části spektra. Mimo jiné nám toto pozorování odhaluje možné složení tohoto disku a jeho vnitřní fungování.

Mezinárodní tým astronomů provedl na superpočítači úspěšné simulace ke znázornění procesu vzniku velmi hmotných černých děr ze supersonických proudů plynu zbylých po Velkém třesku. Studie byla publikována v časopise Science. Vedoucím výzkumného týmu byl Shingo Hirano z University of Texas, Austin's Department of Astronomy. „To je významný postup vpřed. Původ monstrózních černých děr zůstával dlouhou dobu záhadou a teprve nyní jsme se přiblížili k jejímu vyřešení,“ říká Shingo Hirano.

Již před několika měsíci dalekohled Jamese Webba provedl první spektrální analýzy atmosfér exoplanet, přičemž se mu v nich podařilo nalézt vodu i oxid uhhličitý, nebo dokonce planetu přímo vyfotografoval. Ve všech případech se však jednalo o již dříve objevené světy. Nyní jsme se poprvé dočkali i potvrzení existence exoplanety nové.

Preeti Kharb a Dharam Vir Lal z National Centre for Radio Astrophysics (NCRA), TIFR, Pune, a David Merritt z Rochester Institute of Technology, New York, USA objevili nejtěsnější dvojici supermasivních černých děr ve spirální galaxii pojmenované NGC 7674, která je od Země vzdálena zhruba 400 miliónů světelných roků. Zdánlivá vzdálenost mezi oběma objekty v tomto binárním systému je menší než jeden světelný rok. To je mnohem méně než dosavadní platný rekord, kdy dvojici supermasivních černých děr dělila vzdálenost 24 světelné roky.

Jen zlomek hvězd v galaktických kupách putuje mezigalaktickým prostorem. Tyto hvězdy byly kdysi vymrštěny ze svých mateřských hvězdných ostrovů vlivem obrovských slapových sil působících mezi jednotlivými galaxiemi. Světlo vydávané těmito hvězdami je nazýváno „mezigalaktické“, z anglického Intra-cluster Light (ICL). Je však extrémně slabé, jeho jasnost je menší než jedno procento jasnosti nejtmavší oblohy, jež na Zemi můžeme pozorovat. Z vědeckého hlediska je ale velmi hodnotné, protože hvězdy, které ho vydávají při svém pohybu, následují gravitační pole dané galaktické kupy, a tak díky němu můžeme zkoumat rozložení temné hmoty.

Astronomové používající k pozorování vesmíru Hubblův kosmický dalekohled HST objevili, že objekt pojmenovaný Markarian 231 (zkráceně Mrk 231), což je nejbližší galaxie k Zemi, která ve svém nitru hostí kvasar, je poháněný dvěma centrálními černými děrami kroužícími navzájem kolem sebe.

Saturn má kromě ikonických prstenů i rekordních 83 známých měsíců, z čehož 20 ještě čeká na potvrzení. Jeho největší přírodní družicí je žlutý Titan, který bezpochyby patří i k těm nejzajímavějším ve Sluneční soustavě. Jde o zamlžený svět s hustou atmosférou plný jezer, řek a moří z uhlovodíkových kapalin, jako je například kapalný metan. Právě na tento zajímavý objekt byla 4. listopadu namířena beryliová zrcadla dalekohledu Jamese Webba.
Družice NASA s názvem NuSTAR pro oblast rentgenového zářeníAutor: NASA/JPL-CaltechHluboko v srdci naší spirální Galaxie se nachází horký materiál kroužící kolem černé díry, která má hmotnost několika miliónů hmotností Slunce. Většina galaxií – možná dokonce všechny – má ve svém středu podobná monstra. A čím větší galaxie, tím větší černá díra se v jejím středu usadila. Tyto supermasivní černé díry jsou udržovány při životě tím, že polykají hvězdy, planety, asteroidy, komety a oblaka plynů, která zabloudí do oblasti hustého galaktického jádra.

Mezi přednosti teleskopu Jamese Webba patří i schopnost detailně analyzovat dopadající záření pomocí spektroskopů. Tím lze například zjistit, jak daleko se od nás vzdálené galaxie nachází nebo z čeho se skládají hvězdy a plynné obaly exoplanet. Tentokrát se dalekohled opět zaměřil na exoplanetu o hmotnosti Saturnu s označením WASP-39 b nacházející se přibližně 700 světelných let od Země. Obíhá kolem své ústřední hvězdy v menší vzdálenosti než Merkur kolem Slunce, proto ho řadíme mezi tzv. horké Saturny.

Vesmírný dalekohled Jamese Webba (JWST) pořídil pomocí kamery NIRcam fotografii protohvězdy L1527 vzdálené 460 světelných let od planety Země, která se nachází v souhvězdí Býka. Jde o vznikající hvězdu s velice nestabilním tvarem, ve které však ještě neprobíhají termonukleární reakce. Kolem ní se díky gravitaci mísí hustá oblaka prachu, což lze jasně vidět na fotografii, kde oranžové odstíny reprezentují hustá mračna a modré ta řidší. Protohvězda při svém vývoji vyvrhává oblaka plynů. Tyto výtrysky se následně srážejí s okolní hmotou, čímž vyvářejí tvar připomínající přesýpací hodiny.

Perfektní optika pozlacených zrcadel dalekohledu Jamese Webba znovu ukázala co dokáže. Teleskop byl tentokrát namířen na velice známé Pilíře stvoření, oblast uvnitř Orlí mlhoviny M16. Zachytil nejen dechberoucí krásu této části mlhoviny, ale hlavně místa, kde se “rodí” nové hvězdy.

Kosmický dalekohled Jamese Webba (JWST) agentur NASA/ESA/CSA opět předvedl své možnosti, když nasnímal planetu Neptun, její prachové prstence a sedm měsíců. Neptun, který někdy řadíme mezi ledové obry, se nachází 30krát dále od Slunce než Země a obíhá na samé hranici, v temných končinách Sluneční soustavy.

Mnoho objektů zájmu Webbova vesmírného dalekohledu je skryto lidskému zraku v kosmických dálavách, často i mimo naši Galaxii. Jednou z výjimek, na kterou se nyní dalekohled zaměřil, je Velká mlhovina v Orionu, v Messierově katalogu objekt č. 42. Pod trojicí známých hvězd Orionova pásu ji spatříme jako rozmazanou hvězdičku i pouhým okem. Už malý dalekohled odhalí slabý závoj mlhavého vzhledu kolem jasného středu, který ukrývá několik velmi zářivých hvězd. Čtyři z nich jsou dobře vidět i amatérsky a říká se jim Trapez. Mlhoviny, jako je tato, jsou nádhernou ukázkou tvorby nových hvězd a jejich planetárních soustav. A M42 je jednou z těch nejbližších. JWST zde odhalil dosud neviděné detaily.

Prostřednictvím nového kosmického teleskopu s názvem James Webb Space Telescope (JWST) astronomové pořídili přímou fotografii objektu HIP 65426b, což je exoplaneta typu plynného obra o hmotnosti zhruba 6 až 12 hmotností planety Jupiter. Tato exoplaneta se nachází ve vzdálenosti přibližně 363 světelné roky a její poloha se promítá do souhvězdí Kentaura. Byla objevena v roce 2017 a je 1,5krát větší než Jupiter. Obíhá kolem hvězdy spektrální třídy A2 s označením HIP 65426 (rovněž známé jako HD 116434), která je téměř o 3 000 K teplejší než Slunce a přibližně dvakrát hmotnější.

James Webb Space Telescope (JWST) pořídil fotografii hnědého trpaslíka se zrníčky křemičitanů v jeho atmosféře. Astronomové popsali analýzy hnědého trpaslíka a jeho atmosféry v článku publikovaném na arXiv preprint server. Hnědý trpaslík je vesmírné těleso, které vytvoří protohvězda, jež nemá dostatečnou hmotnost, aby v ní mohly probíhat termonukleární reakce. Objekt tak ve svém jádře nedosáhne teploty potřebné ke spalování vodíku a nestane se tedy hvězdou.

Dalekohled Jamese Webba se kromě skupiny kolidujících galaxií známých jako Stephanův kvintet zaměřil také na další galaxii, která prošla srážkou. Přezdívá se jí Kolo od vozu, protože na snímcích opravdu trochu připomíná loukoťové kolo ze starých kočárů. Dříve šlo totiž o spirální galaxii, podobnou té, která tvoří naši Mléčnou dráhu. Po srážce se však rozpadla a bývalá spirální ramena tvoří paprsky vedoucí k oněm loukotím na okrajích, obehnaným obručí, kterou představuje intenzivní tvorba nových hvězd. Část hmoty, nebo zbytek druhé galaxie, která srážku prodělala, vidíme jako podobně zbarvenou galaxii vlevo od té velké.

Podle nové studie mezinárodního týmu vědců umožní JWST astronomům získat přesná měření hmotnosti raných galaxií. Na základě dat z blízké infračervené kamery NIRCam získal tým odhady hmotnosti některých vzdálených galaxií, které jsou 5 až 10× přesnější než předchozí měření. Je to další ukázka, jak JWST převratně mění naše chápání toho, jak rostly a vyvíjely se nejstarší galaxie ve vesmíru.

S tím, jak jsou postupně uvolňovány další snímky z vesmírného dalekohledu Jamese Webba (JWST), můžeme se setkat i s jejich zpracovanými verzemi. V dnešním článku se podíváme na trojici galaxií očima kamery MIRI, která snímá střední vlnové délky infračerveného pásma. Uvidíme tedy především rozložení prachu v galaxiích, ale také aktivní jádro s černou dírou, která silně pohlcuje hmotu v okolí. Takovou aktivní galaxií je NGC 7496 na úvodním snímku.

V uplynulých dnech již vzrůstalo naše napětí. Jaká data se podařilo získat jednotlivým přístrojům nejdokonalejšího vesmírného dalekohledu Jamese Webba? Co na nich uvidíme? A co nám řeknou o podstatě vesmíru kolem nás? V uplynulých dnech jsme pro vás již připravili souhrnný článek o dalekohledu a o tom, jak se dával do provozu. Přibyla i pozvánka na online přenos s odborníky. V tomto článku najdete aktualizované informace o tom, co bylo zrovna uveřejněno.