Úvodní strana  >  Články  >  Sluneční soustava  >  Výzkumy v ASU AV ČR (201): Fragmentace bolidů v první polovině atmosférické dráhy

Výzkumy v ASU AV ČR (201): Fragmentace bolidů v první polovině atmosférické dráhy

Ukázka vzhledu stopy bolidu EN080418_184736. Zobrazená sekvence celkově trvala 1,7 s. První snímek ukazuje bolid těsně přes výskytem stopy (a), snímky 2 a 3 zobrazují stopu. Na snímku 4 vzniká vlečka (train) meteoru (b), která se na následujících záběrech štěpí. Snímek č. 9 je poslední snímek bolidu se stopou.
Autor: Lukáš Shrbený, Astronomický ústav AV ČR.

Trojice pracovníků Oddělení meziplanetární hmoty ASU studovala záznamy videokamer z pádů bolidů. V osmi případech byla pozorována fragmentace těchto těles v první polovině atmosférické dráhy. Autoři ukazují, že tělesa začala fragmentovat velmi záhy a hned se za nimi vytvářela ionizovaná stopa. K prvotní fragmentaci došlo při velmi nízkých hodnotách dynamického tlaku atmosféry na čelní plochu meteoroidu, mnohem nižších, než je odpovídající pevnost meteoroidu s puklinami vzniklými během srážek v meziplanetárním prostoru. Neobvykle nízké hodnoty mohou souviset s kosmickým zvětráváním.

Průlety jasných bolidů patří k těm astronomickým úkazům, nad jejichž spatřením zaplesá i srdce naprostého laika. Spatřit jasnou padající hvězdu, za níž se táhne dlouhá pomalu se rozplývající stopa, není jen tak. Přitom málokdo z laiků ví, že „padající hvězdy“ jsou důsledkem masivní fragmentace obvykle velmi malého kosmického tělesa.

Fragmentace bolidů byla jasně dokumentována v mnoha případech. V minulosti byl začátek fragmentace obvykle určován buď geometricky, kdy na fotografiích byly identifikovány trasy jednotlivých fragmentů, nebo dynamicky, a to použitím fragmentačního modelu k popisu dynamiky a světelné křivky. Tyto tři klasické metody byly doplněny videopozorováním, na nichž je v záznamu fragmentace přímo patrná. Každopádně platí, že obecně k fragmentaci dochází v okamžiku, kdy dynamický tlak atmosféry přesáhne některou z mezí pevnosti meteoroidu. Těchto mezí může být hned několik. Jedna, vlastní pevnost materiálu, odpovídá skutečné pevnosti monolitické horniny. Bolidy se ale typicky rozpadají při mnohem menších pevnostech. To kvůli tomu, že v tělesech se typicky nacházejí praskliny, které celkovou pevnost velmi účinně snižují. Obvyklé hodnoty fragmentačních mezí jsou od pár desetin po několik jednotek megapascalů. Mezi známými hodnotami se ale občas vyskytují i hodnoty výrazně menší, kolem 0,03 MPa. Tyto pevnosti byly zaznamenány při fragmentacích v první polovině atmosférické trajektorie bolidu. A právě tato kritická fáze rozpadu vesmírného vetřelce se stala centrem výzkumu pracovníků Oddělení meziplanetární hmoty ASU pod vedením Lukáše Shrbeného.

Autoři těží z dlouhodobého projektu založeného na rutinním vícestaničním pozorování bolidů v rámci české části Evropské bolidové sítě. Každá ze stanice je vybavena digitální autonomní pozorovací stanicí DAFO, z nichž lze pro každý významný bolid zkonstruovat jeho atmosférickou i meziplanetární trajektorii. Na stanicích v Ondřejově a Kunžaku jsou instrumenty doplněny 14 původně bezpečnostními IP kamerami, které pokrývají celou oblohu. Tyto kamery poskytují nezkreslený pohled na časový vývoj bolidu. Postupný rozpad je ale patrný i z dohledových kamer na stanicích bolidové sítě a také z přístrojů FIPS (Fireball Intelligent Positioning System), což je dvojice pevné celooblohové monitorovací a rychle pohyblivé kamery s užším zorným polem, jejímž cílem je bolid během přeletu oblohou sledovat.

Jedním ze základních projevů fragmentace je vznik ionizované stopy za tělesem. Všechny bolidy vypadají v této fázi velmi podobně. Bodový meteor postupně zjasňuje a za ním vzniká kapkovitá struktura – stopa (wake), která se pohybuje společně s meteoroidem v jeho těsné blízkosti. Ta posléze vyhasne. Za ionizovanou stopou často vzniká i déletrvající stopa, často nesouvislá, která se s bolidem již nepohybuje, zůstává za ním (a po chvíli pohasne).

Autoři velmi podrobně prozkoumali osm vícestaničně kvalitně zachycených bolidů a studovali vlastnosti jejich stopy. Pro každý z bolidů měřili na jednotlivých snímkách dva kritické body: střed hlavy bolidu a poslední bod stopy. Vzdálenost mezi těmito dvěma body pak reprezentuje délku stopy. Délka stopy byla pak porovnávána s dalšími určenými vlastnostmi bolidů.

Ve výsledkách se objevily očekávatelné logické souvislosti. Například pokud se stopa objevila blíže k počátku bolidu, znamenalo to, že se nachází výše v atmosféře. Podobně bylo potvrzeno, že čím rychleji meteoroid do atmosféry vstupuje, tím výše se započne jeho rozpad. Autoři poukázali ale i na překvapivé souvislosti, které z analýzy ovšem jednoznačně vyplynuly. Např. není na první pohled jasné, proč by měla maximální pozorovaná délka stopy souviset se vzdáleností, jakou bolid urazil od počátku do místa vzniku stopy. Dále by se očekávalo, že křehčí materiál bude postupně rozptylován do delší stopy. To se však pro jevy v první polovině vzdušné trajektorie nepotvrdilo.

Dynamické tlaky odpovídající počátkům vzniku stopy dosahují velmi malých hodnot mezi 0,004 a 0,062 MPa. To jsou velmi malé hodnoty, jejichž bližší prozkoumání zasluhovalo další úsilí.

Autoři oněch osm vybraných pádů modelovali s pomocí semiempirického fragmentačního modelu, jehož autorem je Jiří Borovička, jeden ze spoluautorů článku. Tento model je především určen k popisu světelné křivky bolidu a je založen na optimalizované kombinaci jednotlivých příspěvků od tří typů těles. Jednak od běžných fragmentů, které se dále vypařují až do další fragmentace, erodujících fragmentů, z nichž unikají z povrchu malé částice, které se vzápětí odpařují, a z prachu. Kombinací určitého počtu příspěvků těchto tří typů lze obvykle velmi přesvědčivě vystihnout světelnou křivku bolidu.

Z výpočtů vyplývá, že pro uvažovanou osmici bolidů byly erodující fragmenty dominantním způsobem fragmentace. Na základě fragmentačního modelu bylo možné i teoreticky předpovědět vlastnosti stopy bolidů. Teoretické předpovědi ovšem nebyly úplně v souladu s hodnotami určenými z měření. Teoretická délka stopy byla vždy menší než délka stopy změřená. Tento rozpor vysvětlují autoři dvěma možnými efekty. Jednak je možné, že model stopy byl předčasně useknut. Anebo se zde pozorovatelně uplatňují efekty nezahrnuté ve fragmentačním modelu, například přítomnost plynu nebo fragmentace již erodovaných fragmentů.

Celkově vzato se dá říci, že výšky první fragmentace bolidů odpovídají výškám, v nichž se poprvé objevují jejich ionizované stopy. Odpovídající nízká pevnost materiálu je podle autorů zřejmě důsledkem dlouhodobého vystavení povrchů těles působení kosmického záření, tedy procesu tzv. kosmického zvětrávání. Ukazuje se, že některá tělesa meziplanetární hmoty jsou vlastně hromadami suti (rubble piles) drženými pohromadě slabými silami s očekávanou pevností v tahu pouhých 25 Pa. Pokud je však povrch takového tělesa vystaven slunečnímu záření a slunečnímu větru, mohou se k sobě na povrchu jednotlivá zrnka sutě připéci, čímž vzroste zdánlivá pevnost tělesa na hodnoty popisované v práci. Autoři zmiňují, že tento předpoklad by mělo být možné ověřit studiem vzorků odebraných z povrchu planetky Itokawa. 

Práce je především motivací pro zlepšení používaného fragmentačního modelu započtením jevů, které nebyly dosud považovány za důležité. Výsledky modelu doposud velmi přesvědčivě vystihovaly světelné křivky bolidů. Započtením uvažovaných jevů by se mohla zlepšit i předpovědní schopnost vlastností ionizovaných stop. 

REFERENCE

L. Shrbený, P. Spurný, J. Borovička, Fireball fragmentation in the first half of the atmospheric trajectory, Planetary and Space Science  187 (2020), article id. 104956.

KONTAKT

Mgr. Lukáš Shrbený, Ph.D.
lukas.shrbeny@asu.cas.cz
Oddělení meziplanetární hmoty Astronomického ústavu AV ČR

 

Zdroje a doporučené odkazy:
[1] http://www.asu.cas.cz/cz/veda-a-vyzkum/vedecka-oddeleni/oddeleni-mph

Převzato: Astronomický ústav AV ČR, v.v.i.



O autorovi

Michal Švanda

Michal Švanda

Doc. Mgr. Michal Švanda, Ph. D., (*1980) pochází z městečka Ždírec nad Doubravou na Českomoravské vrchovině, avšak od studií přesídlil do Prahy a jejího okolí. Vystudoval astronomii a astrofyziku na MFF UK, kde poté dokončil též doktorské studium ve stejném oboru. Zabývá se sluneční fyzikou, zejména dynamickým děním ve sluneční atmosféře, podpovrchových vrstvách a helioseismologií a aktivitou jiných hvězd. Pracuje v Astronomickém ústavu Akademie věd ČR v Ondřejově a v Astronomickém ústavu Matematicko-fyzikální fakulty Univerzity Karlovy v Praze, kde se v roce 2016 habilitoval. V letech 2009-2011 působil v Max-Planck-Institut für Sonnensystemforschung v Katlenburg-Lindau v Německu. Astronomií, zprvu pozorovatelskou, posléze spíše „barovou“, za zabývá od svých deseti let. Před začátkem pracovní kariéry působil v organizačním týmu Letní astronomické expedice na hvězdárně v Úpici, z toho dva roky na pozici hlavního vedoucího. Kromě astronomie se zajímá o letadla, zejména ta s více než jedním motorem a řadou okýnek na každé straně. Více o autorovi na jeho webových stránkách svanda.astronomie.cz.

Štítky: Stopa meteoru, Bolid, Astronomický ústav AV ČR


48. vesmírný týden 2021

48. vesmírný týden 2021

Přehled událostí na obloze a v kosmonautice od 29. 11. do 5. 12. 2021. Měsíc bude v novu a je vidět na ranní obloze, obtížně i s planetou Mars. Před svítáním bude nejlépe pozorovatelná poměrně jasná kometa C/2021 A1 (Leonard), která 3. 12. projde kolem kulové hvězdokupy M3. Večerní obloha nabízí pětici planet, tři z nich viditelné pouhým okem – Venuši, Jupiter a Saturn. Aktivita Slunce je nízká, ale mohli jsme pozorovat CME a Merkur. Na cestě k planetce je sonda DART. Země poskytla svou pohybovou energii sondě Solar Orbiter, která se kolem ní prosmýkla skrz nebezpečné zóny družic a trosek. Před 200 lety se narodil Wilhelm Tempel, jehož jméno nese řada komet.

Další informace »

Česká astrofotografie měsíce

IFN v souhvězdí Andromedy (11h 20min)

Titul Česká astrofotografie měsíce za říjen 2021 obdržel snímek „IFN v souhvězdí Andromedy", jehož autorem je Martin Vyhlídal     Souhvězdí Andromedy je pravděpodobně jednou z nejčastěji fotografovaných oblastí naší noční oblohy. Díky tomu, že se v něm nachází nejjasnější ze

Další informace »

Poslední čtenářská fotografie

Východní mlhovina Řasy

HaOIII paleta východní části mlhoviny Řasy 20x300s Ha (Baader 7nm) 28x300s OIII (Baader 6nm) Gain 1600, Offset 25, bin 1x1 QHY 294MM Pro, EQ6R, SW 200/800, ZWO EAF, Baader Ha, OIII

Další informace »