Úvodní strana  >  Články  >  Vzdálený vesmír  >  Výzkumy v ASU AV ČR (103): O vzniku kulových hvězdokup

Výzkumy v ASU AV ČR (103): O vzniku kulových hvězdokup

Zjednodušené schéma vzniku generací hvězd ve staré kulové hvězdokupě. (a) V mlhovině exploduje hvězda populace III. (b) V obálce tlačené rázovou vlnou vznikají hvězdy první generace. (c) Hvězdy první generace jsou zdrojem mohutných hvězdných větrů. (d) Souhrou větrů z více hvězd vzniká dostředná obálka, která fragmentuje a vytváří hvězdy druhé generace.
Autor: Simone Recchi

Kulové hvězdokupy jsou velice zajímavými útvary v dalekém halu naší Galaxie, ale i v galaxiích jiných. Tato seskupení velice starých hvězd se stále poněkud vzpírají pokusům o vysvětlení. Simone Recchi z ASU společně s dalšími kolegy z Oddělení galaxií a planetárních systémů s pomocí numerických simulací vyšetřovali možný scénář vzniku těchto objektů.

Kulové hvězdokupy jsou gravitačně vázanými seskupeními hvězd, jež jsou v dynamické rovnováze, tzn. že hvězdokupa jako celek ani neexpanduje ani nekolabuje. Hvězdy v kulových hvězdokupách jsou velmi staré a v jedné z nich jich napočítáme až stovky tisíc. Ještě donedávna se astronomové domnívali, že všechny hvězdy v dané kulové hvězdokupě vznikly společně a se stejným chemickým složením. Až nedávná pozorování poukázala na zajímavé nesrovnalosti. V těchto objektech se například nachází několik populací hvězd, a to v některých případech až sedm. To se týká především starších hvězdokup, ty mladší pravděpodobně nevykazují zjevné známky více populací. Zdá se tedy, že v raném vesmíru, kdy vznikaly staré kulové hvězdokupy, musely existovat nějaké speciální podmínky, které jejich vlastnosti odlišují. Hvězdy v jednotlivých populacích kulové hvězdokupy se liší chemickým složením, což se nejlépe dá vysvětlit tak, že pozorované populace odpovídají generacím hvězd, kdy se ty pozdější tvoří z materiálu obohaceného produkty jaderného vývoje generací předchozích. Míra obohacení těžšími prvky však neodpovídá hmotě vyvržené supernovami, které by jinak přirozeně vysvětlily mnohé jiné vlastnosti. Navíc se zdá, že generace hvězd v kulových hvězdokupách vznikaly při v čase dobře omezených událostech, hvězdotvorba tedy neprobíhala neustále. Nejstarších hvězd je v současnosti v hvězdokupách výrazně méně, než by odpovídalo hvězdnému vývoji. Jakoby nějaký mechanismus hvězdy nejstarší generace z hvězdokupy odstraňoval.

Simone Recchi i další pracovníci Oddělení galaxií a planetárních systémů ASU navrhují hypotézu, která elegantně vysvětluje mnohé z podivných vlastností kulových hvězdokup. O obohacení se totiž mohly zasloužit obří hvězdy úplně první generace hvězd ve vesmíru, tedy tzv. populace III. Takové hvězdy dnes již ve vesmíru neexistují. Předpokládá se, že byly extrémně chudé na těžší prvky a jejich hmotnosti mohly dosahovat dnes nepřekonatelných hranic – více než 150násobku hmotnosti Slunce.

Obecná představa scénáře je tedy taková, že z obřího molekulového oblaku se stane zárodek kulové hvězdokupy a v jejím centru se zformuje přinejmenším jedna hvězda populace III. Ta exploduje a vzniklá rázová vlna před sebou hrne původní materiál, čímž vytváří hustou obálku. Současně se původní materiál promíchává s vyvrženou látkou z hvězdy, ta je však již obohacena o těžší prvky. Rozpínající se obálka fragmentuje, fragmenty gravitačně kolabují a vzniká první generace hvězd.

Mnohé z těchto hvězd jsou hvězdami horkými s velmi silnými hvězdnými větry. Přinejmenším polovina hmoty vanoucí ve větrech se posouvá směrem ke středu kupy, tedy do místa, kde explodovala původní hvězda populace III. Ve středové oblasti se setkávají hvězdné větry více hvězd, plyn se zde zahušťuje a efektivně ochlazuje. Vzniká tak prostor pro vznik další generace hvězd. Látka z hvězdných větrů se nemusí zahušťovat až v samotném středu, ale k nadkritickému zhuštění může docházet v nové obálce, která se pohybuje směrem do nitra. Každopádně se vznikem další generace hvězd se proces může opakovat.

Scénář tedy vysvětluje, proč se více populací objevuje především u starých kulových hvězdokup. V nových již nemohou vznikat extrémně hmotné hvězdy populace III, neboť látka molekulových oblaků je až přiliš „znečištěna“ těžšími prvky. Každá generace hvězd vzniká pouze poté, když látka v obálce přesáhne podmínky pro fragmentaci. Navíc, první generace hvězd vznikla v obálce rozpínající se ven z kupy, vzniklé hvězdy si tedy zachovaly velkou část momentu hybnosti a mnohé z nich mohly hvězdokupu dávno opustit. Tyto podmínky pro pozdější generace již nenastaly, neboť ty vznikají v obálkách pohybujících se směrem dovnitř. Pokud by pozdější generace vznikající fragmentací dostředných obálek vznikaly rychle, ještě předtím, než hvězdy první generace začaly explodovat jako supernovy, vysvětlily by se i rozpory v chemickém složení pozdějších generací.

Autoři tento scénář prověřovali s pomocí numerických simulací, které v sobě zahrnují velké množství fyzikálních efektů, které v takovém problému přicházejí v úvahu. Simulace velmi dobře odpovídají výše nastíněnému scénáři. Výpočet začíná umělým výbuchem hvězdy populace III, která při explozi do okolního oblaku uloží 1046 J energie, což je o dva řády více, než kolik odpovídá výbuchu běžné supernovy. Vytváří se rázová vlna pohybující se ven, která zhušťuje okolní mlhovinu. Ta velmi záhy, přibližně 5 milionů let po výbuchu fragmentuje a ve vzdálenosti kolem 20 pc od centra mlhoviny mohou vznikat hvězdy první generace. Časová škála poněkud závisí na počátečních podmínkách modelu, při větší původní hustotě obálka fragmentuje rychleji. Nové hvězdy „společnými silami“ vytváří dostředný vítr, který se účinně chladí a opět velmi rychle, jen o něco déle než za půl milionu let, fragmentuje a vytváří hvězdy druhé generace. Opět v závislosti na modelu může být tato časová škála delší, pro hustší původní plyn se tato fáze natahuje až na jednotky milionů let. Teprve po třech milionech let začnou explodovat jako supernovy typu II nejhmotnější hvězdy první generace. Mnohé z těchto hvězd si uchovaly moment hybnosti, od hvězdokupy se odpoutávají a unikají do okolního prostoru.

Autoři v tomto kroku simulaci ukončili a slibují, že v navazujících projektech budou studovat vznik dalších generací.

REFERENCE

Recchi, S. a kol., Globular Cluster formation in a collapsing supershell, Astrophysics and Space Science 362 (2017) article id.183, preprint arXiv1708.05053.

KONTAKT

Dr. Simone Recchi, Ph. D.
Oddělení galaxií a planetárních systémů Astronomického ústavu AV ČR
Email: simone.recchi@asu.cas.cz

Zdroje a doporučené odkazy:
[1] Oddělení galaxií a planetárních systémů ASU

Převzato: Astronomický ústav AV ČR, v.v.i.



Seriál

  1. Na čem se pracuje v Ondřejově (1): Objev prvních B[e] nadobrů v Galaxii v Andromedě
  2. Na čem se pracuje v Ondřejově (2): Meteority Příbram a Neuschwanstein nedoprovázejí malá tělesa
  3. Na čem se pracuje v Ondřejově (3): Cesta k seismologii slunečních protuberancí
  4. Na čem se pracuje v Ondřejově (4): Předpověď slupky v galaxii NGC3923: cesta k ověření alternativní teorie gravitace?
  5. Na čem se pracuje v Ondřejově (5): Zašpinění bílí trpaslíci s magnetickým polem
  6. Na čem se pracuje v Ondřejově (6): Proudění plazmatu kolem slunečních skvrn
  7. Výzkumy na AsÚ AV ČR (7): SPLAT - mocný nástroj pro zobrazení a jednoduchou analýzu spekter
  8. Výzkumy na AsÚ AV ČR (8): Druhotná tvorba hvězd ve vznikajících galaxiích a hmotných hvězdokupách
  9. Výzkumy na AsÚ AV ČR (9): Hvězda v prachové obálce v okolí černé veledíry
  10. Výzkumy na AsÚ AV ČR (10): Střižné proudění ve sluneční atmosféře jako generátor elektrického pole
  11. Výzkumy na AsÚ AV ČR (11): Komplikovaná rotace planetky Apophis ovlivňuje její let Sluneční soustavou
  12. Výzkumy na AsÚ AV ČR (12): Protony slunečního větru ve vzdálenosti jedné astronomické jednotky od Slunce
  13. Výzkumy na AsÚ AV ČR (13): Chladný plyn v mezigalaktickém prostoru vytržen z galaxie ESO 137-001
  14. Výzkumy v AsÚ AV ČR (14): Bílá erupce pozorovaná spektrografem IRIS
  15. Výzkumy v AsÚ AV ČR (15): Be hvězda v těsné dvojhvězdě s horkým podtrpaslíkem
  16. Výzkumy v AsÚ AV ČR (16): Vliv rotačního směšování a metalicity na ztrátu hmoty hvězdným větrem
  17. Výzkumy v AsÚ AV ČR (17): Osiřelé penumbry jako testovací materiál pro teorii slunečních skvrn
  18. Výzkumy v AsÚ AV ČR (18): Detailní modely gravitačního pole Země
  19. Výzkumy v AsÚ AV ČR (19): Nejpřesněji určené parametry binární planetky
  20. Výzkumy v AsÚ AV ČR (20): Jasná Perseida s neobvykle vysokou počáteční výškou
  21. Výzkumy v AsÚ AV ČR (21): Prostorové mapování galaktického centra pomocí rentgenové polarimetrie
  22. Výzkumy v AsÚ AV ČR (22): Vliv atmosféry a oceánů na polohu rotační osy Země
  23. Výzkumy v AsÚ AV ČR (23): Analytický model Birkelandových proudů
  24. Výzkumy v AsÚ AV ČR (24): Ověřování zákrytového modelu proměnných aktivních galaktických jader
  25. Výzkumy v AsÚ AV ČR (25): Urychlování elektronových svazků ve slunečních erupcích
  26. Výzkumy v AsÚ AV ČR (26): Jak rotují kometární meteoroidy?
  27. Výzkumy v AsÚ AV ČR (27): Odhalovaná tajemství hvězdy se závojem
  28. Výzkumy v AsÚ AV ČR (28): Hvězdný vítr v dvojhvězdě s kompaktní složkou
  29. Výzkumy v AsÚ AV ČR (29): Rozšiřování magnetických trubic nad slunečními aktivními oblastmi
  30. Výzkumy v AsÚ AV ČR (30): Jak souvisejí astrosféry a astroohony s urychlováním částic kosmického záření?
  31. Výzkumy v AsÚ AV ČR (31): Dlouhodobé změny aktivity kataklyzmické proměnné V1223 Sgr
  32. Výzkumy v AsÚ AV ČR (32): Upřesnění základních parametrů planetky Apophis
  33. Výzkumy v AsÚ AV ČR (33): Možnosti měření magnetických polí ve sluneční chromosféře, přechodové oblasti a koróně
  34. Výzkumy v AsÚ AV ČR (34): Oblak G2 přežil průlet kolem centra Galaxie a je zřejmě mladou hvězdou
  35. Výzkumy v AsÚ AV ČR (35): Mateřské těleso meteoritu Čeljabinsk opět neznámé
  36. Výzkumy v AsÚ AV ČR (36): Nové dvojhvězdy s horkou podtrpasličí hvězdou a vlastnosti této populace hvězd
  37. Výzkumy v AsÚ AV ČR (37): Rekonstrukce vzhledu aktivního galaktického jádra
  38. Výzkumy v AsÚ AV ČR (38): Simulace chování astrofyzikálního plazmatu v extrémních podmínkách
  39. Výzkumy v AsÚ AV ČR (39): Drakonidy 2011 z letadla
  40. Výzkumy v AsÚ AV ČR (40): Kapitoly v učebnici Asteroids IV i od pracovníků AsÚ
  41. Výzkumy v AsÚ AV ČR (41): Balíček programů pro analýzu nemaxwellovských rozdělovacích funkcí částic ve sluneční atmosféře
  42. Výzkumy v AsÚ AV ČR (42): Tajemná povaha rentgenového zdroje Her X-1
  43. Výzkumy v ASU AV ČR (43): Vznik penumbry sluneční skvrny v přímém přenosu
  44. Výzkumy v ASU AV ČR (44): Rekurentní novy v galaxii M 31
  45. Výzkumy v ASU AV ČR (45): Možná naleziště ropy v Perském zálivu z gravitačních modelů
  46. Výzkumy v ASU AV ČR (46): Mohou být hvězdné pulsace zdrojem proměnnosti hvězdného větru?
  47. Výzkumy v ASU AV ČR (47): O původu meteorického roje Kvadrantid
  48. Výzkumy v ASU AV ČR (48): ALMA bude pozorovat i Slunce
  49. Výzkumy v ASU AV ČR (49): Vliv rentgenového záření na charakter hvězdných větrů v dvojhvězdách s hmotnou komponentou
  50. Výzkumy v ASU AV ČR (50): Turbulence plazmatu a kinetické nestability v expandujícím slunečním větru
  51. Výzkumy v ASU AV ČR (51): Vzhled rázové vlny hvězdy při průletu kolem centra Galaxie
  52. Výzkumy v ASU AV ČR (52): Mění srážky tvar planetek?
  53. Výzkumy v ASU AV ČR (53): Udržely póry sluneční cyklus v době Maunderova minima?
  54. Výzkumy v ASU AV ČR (54): Supererupce na hvězdě DG CVn
  55. Výzkumy v ASU AV ČR (55): Souvislost oblaků CO s obálkami HI v Mléčné dráze
  56. Výzkumy v ASU AV ČR (56): Nárůst kontinua ve slunečních erupcích – nové možnosti jejich předpovědí?
  57. Výzkumy v ASU AV ČR (57): Katalog videí dokumentujících pád bolidu Čeljabinsk
  58. Výzkumy v ASU AV ČR (58): Tisícileté cykly střední výšky světového oceánu
  59. Výzkumy v ASU AV ČR (59): Model expanze oblaků ve slunečním větru
  60. Výzkumy v ASU AV ČR (60): Detekce dopadů zemských miniměsíců
  61. Výzkumy v ASU AV ČR (61): Lze ze spektra aktivního galaktického jádra usoudit na povahu jeho zdroje?
  62. Výzkumy v ASU AV ČR (62): Lze pozorovat ohřev koróny nanoerupcemi?
  63. Výzkumy v ASU AV ČR (63): Neobvyklá rotace trpasličí galaxie je důsledkem nedávné srážky
  64. Výzkumy v ASU AV ČR (64): Přímé pozorování klouzavé rekonexe dalekohledem GREGOR
  65. Výzkumy v ASU AV ČR (65): Složky těsné vizuální dvojhvězdy 1 Del rozlišeny spektroskopicky
  66. Výzkumy v ASU AV ČR (66): Příčky v galaxiích jako důsledek vzájemného slapového působení
  67. Výzkumy v ASU AV ČR (67): Neobvyklé chemické složení zašpiněného bílého trpaslíka
  68. Výzkumy v ASU AV ČR (68): Hustota průmětů drah umělých družic Země na zemském povrchu a přesnost parametrů gravitačního pole Země
  69. Výzkumy v ASU AV ČR (69): Vlastnosti plazmatu ve slunečních protuberancích
  70. Výzkumy v ASU AV ČR (70): Útok létajících hadů - mohou vodíkové proudy fragmentovat na izolované oblaky vodíku?
  71. Výzkumy v ASU AV ČR (71): Vlastnosti satelitů planetek
  72. Výzkumy v ASU AV ČR (72): Rentgenová aktivita polaru AM Herculis
  73. Výzkumy v ASU AV ČR (73): Analýza spektra bolidu Benešov
  74. Výzkumy v ASU AV ČR (74): Když gravitační síla soupeří s elektromagnetickou – Elektricky nabitá látka v okolí zmagnetizované černé díry
  75. Výzkumy v ASU AV ČR (75): Co nám říkají erupce A hvězd o korónách G hvězd?
  76. Výzkumy v ASU AV ČR (76): Deset let optických dosvitů gama záblesků dalekohledy BOOTES
  77. Výzkumy v ASU AV ČR (77): Zdroje záření Lyman-α: Klíč k pochopení minulosti vesmíru?
  78. Výzkumy v ASU AV ČR (78): Hvězdné větry neobvyklých horkých hvězd
  79. Výzkumy v ASU AV ČR (79): Binární bílý trpaslík s magnetickou složkou
  80. Výzkumy v ASU AV ČR (80): Vznik druhé generace hvězd v hustých hvězdokupách
  81. Výzkumy v ASU AV ČR (81): Detekce sopek pod ledovým příkrovem Antarktidy
  82. Výzkumy v ASU AV ČR (82): Pozoruhodný vývoj sluneční póry
  83. Výzkumy v ASU AV ČR (83): Problémy zobrazování vícerozměrných astrofyzikálních dat
  84. Výzkumy v ASU AV ČR (84): Rumunský superbolid byl z neobvyklého materiálu
  85. Výzkumy v ASU AV ČR (85): Fragmentace plynných obálek a vznik dalších generací hvězd
  86. Výzkumy v ASU AV ČR (86): Vzplanutí typu zebra jako diagnostika vlastností plazmatu
  87. Výzkumy v ASU AV ČR (87): Zrcadlová nestabilita v turbulentním slunečním větru
  88. Výzkumy v ASU AV ČR (88): Molekulární plyn v „kometárním“ ohonu galaxie
  89. Výzkumy v ASU AV ČR (89): Jsou aktivní galaktická jádra podobná rentgentovým dvojhvězdám?
  90. Výzkumy v ASU AV ČR (90): Nové určení periody pohybu zemského pólu
  91. Výzkumy v AsÚ AV ČR (91): Prášící supernovy a přebytek infračerveného záření u mladých hvězdokup
  92. Výzkumy v ASU AV ČR (92): Mohou neutronové hvězdy za magnetismus černých veleděr?
  93. Výzkumy v ASU AV ČR (93): Videometeory jako nástroj určení orbit meteoroidů
  94. Výzkumy v ASU AV ČR (94): Kouřové kroužky ve slunečních erupcích
  95. Výzkumy v ASU AV ČR (95): Nalezneme kolem B[e] nadobra pastýřské planety?
  96. Výzkumy v ASU AV ČR (96): Prostorová rekonstrukce protuberance typu tornádo
  97. Výzkumy v ASU AV ČR (97): Globální modely hvězdného větru odhalují menší hmotnostní ztráty horkých hvězd
  98. Výzkumy v ASU AV ČR (98): Je rychlý trpaslík pozůstatkem nepovedeného výbuchu supernovy?
  99. Výzkumy v ASU AV ČR (99): Polarizace rentgenového záření umožní na dálku změřit černou veledíru
  100. Výzkumy v ASU AV ČR (100): Na čem jsme prozatím pracovali…
  101. Výzkumy v ASU AV ČR (101): Hvězdná erupce během planetárního tranzitu
  102. Výzkumy v AsÚ AV ČR (102): Jak zvážit černou veledíru pomocí rentgenových záblesků
  103. Výzkumy v ASU AV ČR (103): O vzniku kulových hvězdokup
  104. Výzkumy v ASU AV ČR (104): Bílé erupce pozorované nad okrajem slunečního disku
  105. Výzkumy v ASU AV ČR (105): Polární výtrysky v okolí černých děr
  106. Výzkumy v ASU AV ČR (106): Pohled na hvězdu se závojem po dvou letech
  107. Výzkumy v ASU AV ČR (107): Co rozlišuje umbru od penumbry sluneční skvrny?
  108. Výzkumy v ASU AV ČR (108): `Oumuamua má excitovanou rotaci
  109. Výzkumy v ASU AV ČR (109): Dlouhodobá aktivita kataklyzmické proměnné QU Carinae
  110. Výzkumy v ASU AV ČR (110): Model přechodové vrstvy ve sluneční atmosféře
  111. Výzkumy v ASU AV ČR (111): Vznik malých železných meteorů
  112. Výzkumy v ASU AV ČR (112): Proudění plazmatu v okolí slunečních filamentů
  113. Výzkumy v ASU AV ČR (113): Studium horkých podtrpaslíků
  114. Výzkumy v ASU AV ČR (114): Efekty obecné relativity v rentgenovém záření aktivních galaktických jader
  115. Výzkumy v ASU AV ČR (115): Původ viditelného záření ve hvězdných supererupcích
  116. Výzkumy v ASU AV ČR (116): Opticky tmavé oblaky neutrálního vodíku
  117. Výzkumy v ASU AV ČR (117): MOND vysvětluje některé neobvyklé vlastnosti místní skupiny galaxií
  118. Výzkumy v ASU AV ČR (118): Nová metoda určení parametrů volné nutace zemského jádra
  119. Výzkumy v ASU AV ČR (119): Pád plazmového oblaku ve sluneční atmosféře jako zdroj rádiového záření


O autorovi

Michal Švanda

Michal Švanda

Doc. Mgr. Michal Švanda, Ph. D., (*1980) pochází z městečka Ždírec nad Doubravou na Českomoravské vrchovině, avšak od studií přesídlil do Prahy a jejího okolí. Vystudoval astronomii a astrofyziku na MFF UK, kde poté dokončil též doktorské studium ve stejném oboru. Zabývá se sluneční fyzikou, zejména dynamickým děním ve sluneční atmosféře, podpovrchových vrstvách a helioseismologií a aktivitou jiných hvězd. Pracuje v Astronomickém ústavu Akademie věd ČR v Ondřejově a v Astronomickém ústavu Matematicko-fyzikální fakulty Univerzity Karlovy v Praze, kde se v roce 2016 habilitoval. V letech 2009-2011 působil v Max-Planck-Institut für Sonnensystemforschung v Katlenburg-Lindau v Německu. Astronomií, zprvu pozorovatelskou, posléze spíše „barovou“, za zabývá od svých deseti let. Před začátkem pracovní kariéry působil v organizačním týmu Letní astronomické expedice na hvězdárně v Úpici, z toho dva roky na pozici hlavního vedoucího. Kromě astronomie se zajímá o letadla, zejména ta s více než jedním motorem a řadou okýnek na každé straně. Více o autorovi na jeho webových stránkách svanda.astronomie.cz.

Štítky: Populace III, Population III, Kulová hvězdokupa, Astronomický ústav AV ČR


38. vesmírný týden 2018

38. vesmírný týden 2018

Přehled událostí na obloze od 17. 9. do 23. 9. 2018. Měsíc je mezi čtvrtí a úplňkem. Venuše je nejlépe viditelná ve dne, Jupiter jen večer velmi nízko na jihozápadě. Mars a Saturn jsou nízko v okolí jižního obzoru. Viděli jsme další start a přistání Falconu 9. Odstartovala poslední Delta II. Počasí odložilo start japonské nákladní lodi. Před 15 roky jsme se rozloučili se sondou Galileo u Jupiteru a před 10 lety s panem profesorem Emilem Škrabalem. Začíná astronomický podzim.

Další informace »

Česká astrofotografie měsíce

Radiant

Titul Česká astrofotografie měsíce za srpen 2018 obdržel snímek „Radiant“, jehož autorem je Lukáš Veselý   Kdo by je neznal … srpnové padající hvězdy jsou velmi populární i mezi neastronomy. Ostatně, s téměř železnou pravidelností se opakují rok co rok za příjemných prázdninových

Další informace »

Poslední čtenářská fotografie

Venuše

Venuše za denního světla mobilem přes dalekohled.

Další informace »