Sluneční soustava

Už od doby, kdy sonda NASA s názvem Voyager 1 prolétla v březnu 1979 kolem obří planety Sluneční soustavy, astronomové uvažovali nad původem blesků na Jupiteru. Toto setkání potvrdilo přítomnost blesků na Jupiteru, o jejichž existenci uvažovali astronomové po staletí. Avšak když dnes již letitý průzkumník prosvištěl kolem obří planety, získaná data ukázala, že s bleskovými výboji spřažené rádiové signály detailně neodpovídají rádiovým signálům vznikajícím při výbojích blesků na naší planetě.

Při pohledu z vesmíru na hladinu oceánu to vypadá, že Země je téměř celá zaplavená vodou. Avšak naše rodná planeta je téměř pouští v porovnání s některými dalšími tělesy Sluneční soustavy, pokud jde o celkové množství kapalné vody na Zemi vzhledem k její velikosti. Například Jupiterův měsíc Europa, který je dokonce menší než náš Měsíc a je pokryt silnou ledovou kůrou. Na základě výzkumů Europy kosmickými sondami však bylo zjištěno, že obsahuje asi dvakrát více vody než Země. Dokonce i maličké Pluto může mít oceán téměř tak velký, jako má naše planeta.

Jen několik dní po jasném bolidu, který byl zaznamenán 23. května 2018 na počátku nautického soumraku nad střední Moravou, zaznamenaly kamery sítě CEMeNt (Central European MetEor NeTwork) 26. května 2018 na počátku astronomického soumraku další jasný a velmi pomalý bolid. Bolid dosáhl absolutní jasnosti -5,2m a jeho atmosférická dráha začala nad severovýchodním cípem Slezska v České republice a skončila nad Slezským vojvodstvím v jižním Polsku. Tento bolid s označením 20180526_204814, bez příslušnosti k některému známému roji (sporadický), byl zaznamenán sedmi kamerami sítě CEMeNt, přičemž dvě z nich byly spektroskopické. Záznam spektra bolidu ze spektrografů na Hvězdárně Valašské Meziříčí je velmi důležitý, protože nám poskytuje velké množství informací o chemickém složení tělesa. Z dostupných dat z kamer sítě CEMeNt byla vypočítána dráha bolidu v atmosféře a také dráha tělesa ve Sluneční soustavě. Průlet tělesa, jehož absolutní jasnost byla vyšší než jasnost Venuše, byl také pozorován četnými náhodnými pozorovateli z řad veřejnosti v České republice.

Dvě blízké supernovy, které explodovaly přibližně před 2,5 miliónem a před 8 milióny roků mohly mít za následek postupné zničení ozónové vrstvy na Zemi, což zřejmě mělo nepříznivé důsledky pro pozemský život. Zejména před 2,5 miliónem roků se podmínky na Zemi měnily velmi dramaticky. Období pliocénu, které bylo velmi teplou a klidnou epochou ve vývoji Země, skončilo.

Klima mladé planety Mars je předmětem rozsáhlých diskusí astronomů. Zatímco dříve se předpokládalo, že na Marsu panovalo teplé a mokré klima podobně jako na Zemi, někteří astronomové se domnívali, že v raném období planety Mars existovalo do značné míry dlouhé zalednění. Z poslední studie, kterou vypracovali Ramses Ramirez z Earth-Life Science Institute (Tokyo Institute of Technology, Japonsko) a Robert Craddock z National Air and Space Museum's Center for Earth and Planetary Studies (Smithsonian Institution, USA), vyplývá, že povrchu mladého Marsu nedominoval led, ale planeta mohla být místo toho mírně teplá a mít sklon k častým dešťům. Pouze malá část povrchu mohla být pokryta vodním ledem.

Od 10. května tohoto roku zahajuje pardubická hvězdárna svůj odborně zaměřený program na sledování a zaznamenávání sluneční aktivity ve spektrální čáře H-Alfa, tedy v úzké čáře emise vodíku. V ní jsou pozorovatelné struktury sluneční chromosféry, tedy dynamické oblasti našeho Slunce, v níž lze pozorovat zajímavé úkazy, jako jsou protuberance, filamenty, aktivní oblasti a výjimečně i erupce. Odborný program je otevřen i zájemcům z řad široké veřejnosti, především pak školám, jako zajímavý doplněk hodin fyziky.

Mezinárodní tým astronomů použil dalekohledy ESO k prozkoumání objektu, který je pozůstatkem primordiální hmoty Sluneční soustavy. Vědci zjistili, že neobvyklé těleso Kuiperova pásu s katalogovým označením 2004 EW95 je značně bohaté na uhlík. Jedná se o první planetku v této vzdálené, chladné oblasti Sluneční soustavy, u které bylo něco takového pozorováno. Tento podivný objekt pravděpodobně vznikl v hlavním pásu planetek mezi Marsem a Jupiterem a následně byl vypuzen z místa původu do miliardy kilometrů vzdáleného exilu v Kuiperově pásu.

Úderem půlnoci na Silvestra 2017 dovršila pozorovací síť pro videopozorování meteorů CEMeNt (Central European MetEor NeTwork) osmý rok své existence. Za tento poměrně dlouhý čas prošla překotným vývojem, kdy se z pozorování ojedinělých vícestaničních meteorů stala efektivním nástrojem pro studium nejmenších částic Sluneční soustavy. Společný projekt českých a slovenských amatérských astronomů se v průběhu své existence rozrůstal a systém širokoúhlých kamer byl doplňován spektrografickými systémy a NFC systémy pro záznam slabých meteorů. Centrem celého výzkumu se v průběhu vývoje sítě CEMeNt stala Hvězdárna Valašské Meziříčí, na jejíž půdě se kromě širokoúhlých systémů, spektrografů a systému pro studium slabých meteorů nachází také radar pro sledování meteorů a monitor ionosféry (SID monitor). Rozsáhlá spolupráce s amatérskými i profesionálními astronomy v rámci celé Evropy vyvrcholila v roce 2014 zahájením spolupráce s Ústavem fyzikální chemie J. Heyrovského AV ČR, díky níž je možné provádět studium plazmatu meteorů v laboratorních podmínkách a také rozsáhlé simulace zaznamenaných spekter meteorů. Vzhledem k objemu dat, který byl shromážděn v roce 2017 sítí CEMeNt, se v první části souhrnu zaměříme na širokoúhlé systémy (WF).

Trojice satelitů studujících magnetické pole Země spolehlivě odhalila detaily magnetického pole vytvářeného oceánskými proudy. Čtyři roky shromažďovaly data družice systému Swarm vypuštěné Evropskou kosmickou agenturou ESA, které jsou určeny k mapování magnetického pole Země z nízké polární oběžné dráhy. Přispěly tak ke zmapování tohoto „druhého“ magnetického pole, které nám může například pomoci vypracovat lepší modely týkající se globálního oteplování.

Až do doby zhruba před deseti roky se astronomové domnívali, že mají docela dobrou představu o tom, jak Země začala společnou existenci s Měsícem. Avšak pozdější a mnohem přesnější měření všechno změnila a vědci se stále potýkají s vyřešením tohoto problému. Jako součást nové práce vědecký tým, jehož členem byl i kosmochemik Nicolas Dauphas z University of Chicago, uskutečnil doposud největší výzkum izotopů kyslíku v měsíčních horninách a objevil malé, ale měřitelné, rozdíly ve složení Měsíce a Země.

Cokoliv se šustne nad obzorem, o tom čeští astronomové dobře vědí. A nezáleží na tom, že tentokrát proťal zářící objekt oblohu nad hranicí Maďarska a Chorvatska. Pomocí dálkové radarové detekce, pozorování pomocí monitorů náhlých ionosférických poruch, kamerových systémů a velmi kvalitních spektrografů lze odhalit tajemství jasného objektu za hranicemi České republiky. Hvězdárna ve Valašském Meziříčí spolu s Ústavem fyzikální chemie J. Heyrovského Akademie věd ČR ve spolupráci s Hvězdárnou Františka Krejčího v Karlových Varech vytvořily konsorcium zabývající se pozorování meteorů pomocí vlastní sítě spektrografů, radarů a monitorů ionosféry a také studiem plazmatu meteorů v laboratorních podmínkách. Ve spolupráci s Ústavem fyziky plazmatu AV ČR vytvoříme tento rok padající hvězdu pomocí nejvýkonnějšího terawattového laseru ve střední Evropě, pražského Asterixu. Možná bude podobná jasnému maďarskému bolidu. Ale o tom snad někdy příště. Nyní se vydejme pátrat po jeho tajemství. Co všechno lze odhalit na dálku z pohodlí českých hvězdáren?

Současné předpovědi počasí se opírají o složité počítačové modely. Tyto simulace využívají všechny fyzikální rovnice, které popisují stav atmosféry včetně proudění vzduchu, změn teploty, vzniku oblačnosti a výskytu srážek. Postupem času došlo ke zdokonalení prognózy, takže současné pětidenní předpovědi počasí jsou přesnější, než byly třídenní předpovědi před 20 roky. Avšak vy nepotřebujete superpočítač, abyste si udělali vlastní předpověď, jaké bude počasí a zda se změní v průběhu několika příštích hodin – to znaly již různé kultury v uplynulém tisíciletí.

Celá desetiletí vědci zvažovali, zda může existovat život pod ledovým povrchem Jupiterova měsíce Europa. Díky nedávným kosmickým misím, jako je například sonda Cassini, mohou být k tomuto měsíci doplněna i další tělesa – například Titan, Enceladus, Dione, Triton, Ceres a Pluto. Ve všech případech se předpokládá, že by na nich mohl existovat život uvnitř oceánů, většinou v okolí hydrotermálních sopouchů nacházejících se na rozhraní jádra a vodního pláště těles.

David Čapek a Jiří Borovička z Oddělení meziplanetární hmoty ASU se v teoreticky zaměřené studii zaměřili na vysvětlení procesů, které vedou ke vzniku meteorů, v jejichž spektrech jsou pozorovány téměř výhradně čáry železa. Ukazují, že ze třech myslitelných modelů pouze jeden odpovídá pozorovaným vlastnostem.

Z nové studie vyplývá, že cyklóny kroužící kolem pólů planety Jupiter jsou záhadně uspořádány do skupin v podobě pětiúhelníku či dalších geometrických obrazců. Od doby, co Galileo Galilei na počátku 17. století poprvé pozoroval planetu Jupiter dalekohledem, astronomové obdivovali některé dramatické útvary na největší planetě Sluneční soustavy, jako například jeho barevné pásy a Velkou rudou skvrnu (Great Red Spot, GRS). Avšak mnoho z nich v okolí pólů planety zůstalo nepoznaných, protože ze Země nejsou pozorovatelné.

Publikované umělecké ztvárnění představuje horký a roztavený Měsíc vynořující se z útvaru v podobě obří rotující koblihy z vypařené horniny nazvané „synestia“, která se vytvořila při srážce dvou těles planetárních rozměrů. Synestia je znázorněna v procesu kondenzace plynů a následného vytváření planety Země. Tento nový model odpovídá na nevyřešenou otázku při vysvětlování původu Měsíce, proč je jeho složení srovnatelné se Zemí. To dosavadní teorie do detailu nevyřešily.

Na únor 2020 přesunula ESA vypuštění kosmické sondy Solar Orbiter k výzkumu Slunce. Ke slunečnímu povrchu se má přiblížit na vzdálenost 42,5 miliónu km. Při průletu budou přístroje sondy mířit stále na stejné místo na Slunci, budou tedy provádět dlouhodobý výzkum jedné oblasti. Po sedmiletém výzkumu bude dráha sondy upravena tak, aby mohla lépe studovat polární oblasti. Avšak již nyní byl vyhlášen konkurs na návrh nové sondy, která bude vůbec poprvé studovat naši hvězdu z Lagrangeova libračního bodu L5 soustavy Slunce-Země.

Mediálním světem nedávno proběhla zpráva, že Měsíc by mohl být ve svém nitru teplejší, než jsme doposud předpokládali. Na základě fotografií měsíčního povrchu pořízených americkou sondou Lunar Reconnaissance Orbiter se americko-německému týmu vědců podařilo objevit známky sopečné činnosti mladší než 100 miliónů let. Zdálo se, že nás bude čekat období „přepisování učebnic“ o historii vývoje Měsíce, nicméně možná bychom s tím měli ještě počkat. V loňském roce totiž vyšla nová vědecká studie nabízející vysvětlení, že za zdánlivě mladým vzhledem některých měsíčních sopečných těles může stát jejich zvláštní vnitřní stavba způsobená průběhem sopečné erupce v prostředí vakua.

Jestli vzbudila nějaká událost v kosmonautice v tomto roce opravdový ohlas, tak jí bylo „vypuštění“ roadsteru Tesla „pilotovaného“ Starmanem na špici rakety Falcon Heavy, která demonstrovala schopnosti soukromého sektoru v bitvě o vesmír. I v autorově okolí sílily dotazy na to, zda se Roadster někdy dostane zpět do okolí Země. Naštěstí na tuto otázku existuje vědecky podložená odpověď, formulovaná v článku připraveném k zaslání do Monthly Notices of the Royal Astronomical Society. O to zajímavější, že má českou stopu. Mezi autory totiž najdeme profesora Davida Vokrouhlického z Astronomického ústav Univerzity Karlovy.

Poklidné astronomické vody v říjnu loňského roku rozvířil objev podivné planetky, která se stala prvním prokázaným návštěvníkem z mezihvězdného prostoru. Kolem objektu se jménem `Oumuamua, což je slovo havajského původu a označuje posla z minulosti, se strhla pravá smršť vědeckých prací, popisujících neobvyklé vlastnosti tohoto objektu. V jedné z nich publikované v prestižním Nature Astronomy figuruje i Petr Pravec z Oddělení meziplanetární hmoty ASU.