Sluneční soustava

S rovníkovým průměrem zhruba 143 000 kilometrů je Jupiter největší planetou ve Sluneční soustavě, jeho hmotnost 300× převyšuje hmotnost Země. Mechanismus vzniku obřích planet podobných Jupiteru byl tématem odborných diskusí po několik desetiletí. Nyní astrofyzikové ze Swiss National Centre of Competence in Research (NCCR) PlanetS of the Universities of Bern a Zürich a ETH Zürich spojili své úsilí k vyřešení dosavadní záhady, jak se Jupiter zformoval. Závěry astronomů byly publikovány v časopise Nature Astronomy.

Publikovaný obrázek ukazuje rozložení ledu na povrchu Měsíce v okolí jižního pólu podle měření uskutečněných přístrojem Moon Mineralogy Mapper (M3) vyrobeným NASA. Modrozelená barva představuje oblasti rozložení ledu zakreslené do snímku měsíčního povrchu. Odstíny šedé barvy odpovídají povrchové teplotě (tmavší odstíny představují studenější oblasti, světlejší regiony jsou naopak teplejší). Led je koncentrován do nejtmavších a nejstudenějších lokalit ve stínu jednotlivých kráterů a vyvýšenin.

Je pravdou, že naše nejbližší hvězda – Slunce – je docela průměrnou stálicí v porovnání se všemi ostatními, které známe v nekonečném a nádherném tajemném vesmíru. Ve svém nitru ve skutečnosti ukrývá docela malý nukleární reaktor udržující život hvězdy, která je pro naši planetu bytostně důležitá. Na jejím viditelném povrchu vznikají mj. sluneční skvrny a erupce a do prostoru vysílá proudy plazmy či různé druhy záření.

Již 11. srpna letošního roku by se měla ke Slunci vydat americká sonda Parker Solar Probe. Jejím hlavním cílem bude porozumět vysokým teplotám koróny, tedy vyšším, než má fotosféra Slunce. S problémem souvisí i neúplné objasnění mechanismu urychlování slunečního větru na velmi vysoké rychlosti v řádech stovek km/s, který může mít po zásahu magnetického obalu Země vážné následky – výpadky internetu, narušení rozvodné el. sítě, chyby v polohách GPS atd. Aby sonda byla úspěšná, musí se rekordně přiblížit ke Slunci!

Nová data získaná pomocí radaru umístěného na palubě kosmické sondy Mars Express, kterou v roce 2003 vypustila k Marsu Evropská kosmická agentura ESA, ukazují na jezero slané kapalné vody ukryté pod vrstvami ledu a prachu v oblasti jižní polární čepičky rudé planety.

Tým astronomů z Carnegie Institution for Science vedený Scottem S. Sheppardem ohlásil zajímavý objev: nalezl 12 nových měsíců kroužících kolem obří plynné planety Jupiter. Jedná se o 11 „normálních“ vnějších měsíců a jeden označený jako „podivín“. Tím se zvýšil celkový počet známých Jupiterových satelitů na úctyhodných 79 – což je nejvíce ze všech planet Sluneční soustavy. Vědecký tým vypátral tyto souputníky již na jaře 2017, kdy byly pozorovány jako velmi vzdálená tělesa Sluneční soustavy v rámci projektu hledání možné planety za drahou Pluta.

Data shromážděná sondou NASA s názvem Juno, která byla pořízena pomocí přístroje JIRAM (Jovian InfraRed Auroral Mapper) na její palubě ukázala nový zdroj tepla v blízkosti jižního pólu Jupiterova měsíce Io. Napovídá to na existenci doposud nepozorovaného vulkánu na povrchu tohoto malého měsíce obří planety. Nová data v oboru infračerveného záření byla získána 16. prosince 2017, kdy se sonda Juno nacházela ve vzdálenosti 470 000 km od měsíce Io.

Zemská osa vykonává vůči nebeskému referenčnímu systému množství pohybů. Jejich znalost je klíčová pro ustavení referenčního souřadnicového systému. Jednotlivé komponenty pohybů zemské osy jsou popsány s různou přesností. Jan Vondrák a Cyril Ron z ASÚ se zaměřili na zlepšení popisu volné nutace zemského jádra.

Na počátku vzniku Sluneční soustavy byl větší oblak prachu a plynu. Tehdejší podmínky způsobily, že se střed oblaku začal smršťovat a vytvořilo se zde Slunce. Nově zrozená hvězda zažehla ve svém nitru jadernou fúzi, ozářila okolí a teplem zahřívala materiál okolního rotujícího cirkumstelárního disku. Zanedlouho se tento materiál spojil do podoby obřích plynných planet, ledových a kamenných těles a Sluneční soustava tak získala podobu, v jaké ji známe dnes.

Zveřejněná animace, ze které pochází úvodní obrázek tohoto článku, názorně ukazuje, jak vznikají deformace v ledové kůře Jupiterova měsíce Europa a jak se vytvořenými prasklinami může dostávat voda z přítomného globálního podpovrchového oceánu Europy až na povrch měsíce.

Často se setkáváme s tím, že tělesa prolétající v blízkosti Země, nebo i dále v pásech asteroidů, jsou dvojitá, nebo mají alespoň měsíčky. Někdy se stane, že vědci zpozorují dvě tělesa obíhající kolem společného těžiště a v několika případech šlo dokonce o dvě podobně velké planetky. To je i případ planetky 2017 YE5.

Astronomové zjistili, že molekulární kyslík v okolí jádra komety 67P/Churyumov-Gerasimenko není uvolňován z jejího povrchu, jak se někteří vědci domnívali, ale může pocházet z nitra kometárního jádra. Kosmická sonda Rosetta vypuštěná Evropskou kosmickou agenturou ESA doprovázela kometu 67P na její dráze kolem Slunce od srpna 2014 do září 2016. Během této doby vyslala k povrchu průzkumný modul Philae a nakonec zakončila svoji existenci pádem na povrch jádra komety.

Kosmická sonda NASA s názvem Dawn dosáhla 6. června 2018 své nejnižší finální dráhy kolem trpasličí planety Ceres a poslala na Zemi tisíce nádherných fotografií včetně dalších údajů. Letový tým navedl sondu na dráhu, která ji přivádí na vzdálenost 35 km nad povrchem Ceres. Zblízka vyfotografovala mimo jiné kráter Occator, což je místo, v němž se nachází množství již dříve objevených světlých depozitů. Nevynechala ani jiné zajímavé oblasti.

`Oumuamua, první mezihvězdný objekt objevený při průletu Sluneční soustavou, se od Slunce vzdaloval rychleji, než se očekávalo. Nesrovnanosti v pohybu tělesa byly odhaleny na základě celosvětové spolupráce a podklady pro tuto analýzu poskytl také dalekohled ESO/VLT pracující v Chile. Výsledky publikované ve vědeckém časopise Nature naznačují, že `Oumuamua by přeci jen mohla být mezihvězdnou kometou a nikoliv planetkou.

V pátek 22. června pozdě večer byl vidět z celého našeho území, kde bylo tou dobou jasno, velmi jasný bolid, který upoutal pozornost velkého počtu náhodných svědků. I když v tu dobu na obloze dominoval svým svitem Měsíc, tak tento bolid, který se pro většinu pozorovatelů pohyboval právě na jižní části oblohy, tedy v blízkosti Měsíce, na malou chvíli jeho jasnost pro blízké pozorovatele dokonce o trochu překonal. O hodinu a jedenáct minut později oblohu rozzářil další jasný bolid. Není tedy překvapením, že nám přišel velký počet pozorování, za která tímto děkujeme a zde podáváme vysvětlení, co tento vzácný přírodní úkaz způsobilo.

Už od doby, kdy sonda NASA s názvem Voyager 1 prolétla v březnu 1979 kolem obří planety Sluneční soustavy, astronomové uvažovali nad původem blesků na Jupiteru. Toto setkání potvrdilo přítomnost blesků na Jupiteru, o jejichž existenci uvažovali astronomové po staletí. Avšak když dnes již letitý průzkumník prosvištěl kolem obří planety, získaná data ukázala, že s bleskovými výboji spřažené rádiové signály detailně neodpovídají rádiovým signálům vznikajícím při výbojích blesků na naší planetě.

Při pohledu z vesmíru na hladinu oceánu to vypadá, že Země je téměř celá zaplavená vodou. Avšak naše rodná planeta je téměř pouští v porovnání s některými dalšími tělesy Sluneční soustavy, pokud jde o celkové množství kapalné vody na Zemi vzhledem k její velikosti. Například Jupiterův měsíc Europa, který je dokonce menší než náš Měsíc a je pokryt silnou ledovou kůrou. Na základě výzkumů Europy kosmickými sondami však bylo zjištěno, že obsahuje asi dvakrát více vody než Země. Dokonce i maličké Pluto může mít oceán téměř tak velký, jako má naše planeta.

Jen několik dní po jasném bolidu, který byl zaznamenán 23. května 2018 na počátku nautického soumraku nad střední Moravou, zaznamenaly kamery sítě CEMeNt (Central European MetEor NeTwork) 26. května 2018 na počátku astronomického soumraku další jasný a velmi pomalý bolid. Bolid dosáhl absolutní jasnosti -5,2m a jeho atmosférická dráha začala nad severovýchodním cípem Slezska v České republice a skončila nad Slezským vojvodstvím v jižním Polsku. Tento bolid s označením 20180526_204814, bez příslušnosti k některému známému roji (sporadický), byl zaznamenán sedmi kamerami sítě CEMeNt, přičemž dvě z nich byly spektroskopické. Záznam spektra bolidu ze spektrografů na Hvězdárně Valašské Meziříčí je velmi důležitý, protože nám poskytuje velké množství informací o chemickém složení tělesa. Z dostupných dat z kamer sítě CEMeNt byla vypočítána dráha bolidu v atmosféře a také dráha tělesa ve Sluneční soustavě. Průlet tělesa, jehož absolutní jasnost byla vyšší než jasnost Venuše, byl také pozorován četnými náhodnými pozorovateli z řad veřejnosti v České republice.

Dvě blízké supernovy, které explodovaly přibližně před 2,5 miliónem a před 8 milióny roků mohly mít za následek postupné zničení ozónové vrstvy na Zemi, což zřejmě mělo nepříznivé důsledky pro pozemský život. Zejména před 2,5 miliónem roků se podmínky na Zemi měnily velmi dramaticky. Období pliocénu, které bylo velmi teplou a klidnou epochou ve vývoji Země, skončilo.

Klima mladé planety Mars je předmětem rozsáhlých diskusí astronomů. Zatímco dříve se předpokládalo, že na Marsu panovalo teplé a mokré klima podobně jako na Zemi, někteří astronomové se domnívali, že v raném období planety Mars existovalo do značné míry dlouhé zalednění. Z poslední studie, kterou vypracovali Ramses Ramirez z Earth-Life Science Institute (Tokyo Institute of Technology, Japonsko) a Robert Craddock z National Air and Space Museum's Center for Earth and Planetary Studies (Smithsonian Institution, USA), vyplývá, že povrchu mladého Marsu nedominoval led, ale planeta mohla být místo toho mírně teplá a mít sklon k častým dešťům. Pouze malá část povrchu mohla být pokryta vodním ledem.