Hvězdy

Nejmenší doposud změřená hvězda byla objevena týmem astronomů pod vedením University of Cambridge. S průměrem jen o kousíček větším než planeta Saturn je gravitační přitažlivost na povrchu této pidihvězdy přibližně 300krát vyšší, než jakou pociťují lidé na povrchu Země. Hvězda je pravděpodobně nejmenší, jak vůbec hvězdy mohou být, aby měly dostatečnou hmotnost umožňující zapálení termojaderných reakcí, při kterých se vodík přeměňuje na hélium. Pokud by byla hvězda o něco menší, tlak v jejím jádru by nebyl dostačující k udržení těchto reakcí.

Skupina astronomů ukázala, že nejrychleji se pohybující hvězdy v naší Galaxii – které doslova letí prostorem tak rychle, že mohou uniknout z Mléčné dráhy – jsou ve skutečnosti uprchlíky z mnohem menší galaxie kroužící kolem té naší. Výzkumníci z University of Cambridge použili data z průzkumu oblohy pod názvem Sloan Digital Sky Survey (SDSS) spolu s počítačovými simulacemi a ukázali, že tito hvězdní „sprinteři“ mají původ ve Velkém Magellanově oblaku LMC (Large Magellanic Cloud), v trpasličí galaxii obíhající kolem Mléčné dráhy.

Naše Galaxie může obsahovat až 100 miliard hnědých trpaslíků. Vyplývá to z nového výzkumu mezinárodního týmu astronomů, jehož vedoucími byli Koraljka Muzic z University of Lisbon a Aleks Scholz z University of St Andrews. Ve čtvrtek 6. července 2017 představil Aleks Scholz na celostátním setkání astronomů na University of Hull jejich závěry o průzkumu hustých hvězdokup, v nichž jsou hnědí trpaslíci velmi hojně zastoupeni.

Pro pozemšťany je život pod jedním Sluncem prostě ta správná možnost. Avšak s rozvojem současné astronomie si uvědomujeme skutečnost, že vesmír je mnohem více zaplněn dvojhvězdami či dokonce trojhvězdnými systémy. A proto, pokud život existuje na planetách mimo Sluneční soustavu, v mnoha případech mohl přivyknout existenci pod dvěma, nebo dokonce třemi slunci. V uplynulých staletích astronomové uvažovali, proč tyto rozdíly existují a jak hvězdné systémy vznikaly.

Napriek tomu, že pre hviezdy často používame synonymum „stálice“, aj oni podliehajú zmenám a majú svoje životy. Ich vývoj však prebieha milióny až miliardy rokov, teda v časových škálách, ktaré počas našich životov nedokážeme postrehnúť. Celý život hviezdy je neustálym súbojom dvoch protichodných princípov: gravitačnej sily, ktorá sa snaží hviezdu zmrštiť, zatiaľ čo vnútorné sily ju naopak chcú roztrhnúť. Kľúč k dlhovekosti spočíva v nájdení rovnováhy.

Hviezda PDS 100 zo súhvezdia Orion je hviezda podobná nášmu Slnku. Od Zeme je vzdialená približne 1 000 svetelných rokov a jej teplota dosahuje približne rovnaké čísla ako naše Slnko a rozmerovo je len o kúsok väčšia. Doposiaľ ju ale zahaľovala nevyriešená záhada.

Medzinárodný tím astronómov pomocou sústavy rádioteleskopov ALMA (Atacama Large Millimeter/submillimeter Array) v Chile pozoroval planetárny disk obklopujúci čerstvo zrodenú hviezdu Fomalhaut, vzdialenú od nás 25 svetelných rokov.

Evropští astronomové zjistili, že rentgenový pulzar s označením AX J1910.7+0917 má nejpomalejší rotaci mezi ostatními pulzary této třídy. Vědecký tým, jehož vedoucím je Lara Sidoli z National Institute for Astrophysics and Space Physics (INAF), Miláno, Itálie, publikoval nový objev 4. května 2017 v článku na arXiv.org.

Po delší době máme možnost na severní obloze spatřit jasnější supernovu, která je ve vizuálním dosahu středně velkých dalekohledů. Supernova se objevila v galalaxii NGC 6946, ve které bylo za posledních 100 let bylo zaznamenáno rekordních 10 vzplanutí supernov.

Skupina astrofyziků na University of Cambridge, jejíž vedoucími byli Farzana Meru a Attila Juhász, použila teoretické modely k určení původu nápadných velkorozměrových spirálních útvarů obklopujících blízkou hvězdu. Mladé hvězdy jsou obklopeny hustými protoplanetárními disky z plynů a prachu a uvnitř těchto disků vznikají planety. Jak planety vznikají, je obtížné určit na základě samotných pozorování, neboť z našeho pohledu jsou přesné detaily procesu ukryté.

Tím vedcov z USA a Taiwanu zachytil prvý jasný obrázok mladej hviezdy obklopenej akrečným diskom. Vo svojom článku publikovanom v časopise Science Advances tím opisuje, ako bol tento obraz zachytený a ďalšie podrobnosti.

Sekce proměnných hvězd a exoplanet ČAS, ve spolupráci s hvězdárnou ve Valašském Meziříčí, pořádá 57. praktikum pro pozorovatele proměnných hvězd, které proběhne 19. 8. – 26. 8. 2017. Máte-li zájmem o astronomická pozorování, která mohou posloužit vědě, tak je praktikum určeno přímo pro vás! Na praktiku se pozorovatelé naučí základům pozorování se CCD kamerami a digitálními zrcadlovkami. Můžete zde napozorovat svůj první tranzit exoplanety, nebo dokonce objevit novou proměnnou hvězdu! Praktikum je zvláště vhodné i pro začínající pozorovatele a studenty.

Každý z nás, kdo někdy spatřil Mléčnou dráhu, se zjista tázal nad tím, odkud vlastně vzala svůj název. Ačkoliv legenda o rozlitém mléku na obloze je již známa věrně, není a nebyla zdaleka jedinou, která se k "pilíři noci" váže. Pohled do - jak dnes víme - roviny naší Galaxie byl studnou inspirace pro všemožné legendy napříč starodávnými civilizacemi i kulturami. Pojďme si některé stručně představit.

Sluneční erupce jsou nejprudšími projevy proměnné magnetické aktivity Slunce. Projevují se ve všech oblastech energetického spektra – ve viditelné oblasti, v oblasti tvrdých ultrafialových a rentgenových délek a také v oblasti rádiového záření, a to díky netermálním procesům, které v erupci probíhají. Ukazuje se, že rádiové záření v erupcích má vynikající diagnostický potenciál pro posouzení podmínek, v nichž se erupce zažehávají. Jan Benáček, student Mariana Karlického z ASU, se věnoval popisu specifického vzplanutí v rádiové oblasti – vzplanutí typu zebra.

Čtrnáctý z řady úspěšných workshopů věnovaných astrofyzice vysokých energií a pozemním experimentům, pozorováním zejména robotickými dalekohledy a také rentgenovým družicím se uskuteční v Karlových Varech od 3. do 7. dubna 2017. IBWS (INTEGRAL/BART Workshop) je pracovní setkání odborníků především z oblasti rentgenového výzkumu vesmíru s pomocí družic pozorujících v gama a rentgenovém oboru a návazných pozemních robotických dalekohledů.

František Dinnbier z ASU se detailně zabýval možným vznikem hvězd při tzv. indukované hvězdotvorbě, kdy se tvorba hvězd postupně „prokusuje“ mlhovinou. Výsledky ukazují, že charakter hvězdotvorby závisí nejen na vrstvičce, v níž hvězdy vznikají, ale také na parametrech okolního prostředí.

Mezinárodní tým astronomů, jehož vedoucím byl Philippe Delorme, Grenoble Alpes University ve Francii, před nedávnem zkoumal záhadný objekt s označením CFBDSIR J214947.2-040308.9 (zkráceně CFBDSIR 2149-0403) za účelem odhalení jeho skutečné povahy. Podle předpokladů může tento objekt být buď mladým osamělým tělesem planetární hmotnosti nebo málo hmotným hnědým trpaslíkem s vysokým obsahem kovů. Výsledky nových pozorování publikované 2. 3. 2017 by mohly pomoci rozlišit mezi oběma kategoriemi.

V roku 1859 publikoval Charles Darwin svoju evolučnú teóriu, podľa ktorej majú všetky formy života spoločného predka. Táto teória položila základy evolučnej biológii. Astronómovia však začali uvažovať, ako by bolo možné aplikovať túto teóriu na hviezdy v Mliečnej dráhe.

Využitím nových metod a dat z evropské astronomické družice GAIA astronomové z univerzity v Torontu odhadli, že rychlost Slunce na oběžné dráze kolem středu naší Galaxie je přibližně 240 kilometrů za sekundu. Kromě toho dospěli při výpočtech k závěru, že vzdálenost Slunce od galaktického centra je přibližně 7,9 kiloparseků (kpc) – tedy téměř 26 000 světelných roků.

Sluneční astronomové pod vedením Jana Jurčáka z ASU pozorovali a analýzovali přerod sluneční póry v osamocenou penumbru. Tento unikátní materiál pozorovaný japonskou kosmickou observatoří Hinode přináší nové znalosti, popisující vliv magnetického pole na vznik a vývoj penumbry.