Související stránky k článku Více než 45 000 galaxií

Kamera NIRCam (Near Infrared Camera) z JWST pořídila zajímavý snímek povrchu Jupiterova měsíce Europa. A co je na tomto snímku nejzajímavější? JWST totiž společně s tímto snímkem i identifikoval na ledovém povrchu Europy oxid uhličitý, který pravděpodobně pochází z podpovrchového oceánu měsíce.

Titul Česká astrofotografie měsíce za duben 2018 obdržel snímek „NGC 3718, Arp214, NGC3729 a Hickson56“, jehož autorem je Martin Myslivec.
Pohled do mnohem vzdálenějších končin vesmíru, než je naše Sluneční soustava, přináší vítězná dubnová fotografie. Spirální galaxie ve vzdálenosti 52 miliónů světelných roků rozervaná interakcí s další velmi blízkou galaxií či skupina galaxií ve vzdálenosti 400 miliónů světelných roků - to už je pořádný fotografický oříšek.

12. 7. 2023 uplynul přesně rok od zveřejnění prvních plnohodnotných vědeckých fotografií z Webbova kosmického dalekohledu. U příležitosti tohoto prvního výročí byla publikována další dechberoucí fotografie. Je na ní zachycena Zemi nejbližší hvězdotvorná oblast v blízkosti hvězdy Rho Ophiuchi. Na první pohled se rozhodně jedná o jednu z vůbec nejpůsobivějších fotografií, které jsme za uplynulý rok díky JWST viděli.

Galaxie jsou majestátní uskupení hvězd v podobě rotujících disků. Avšak ne ve všech případech. Athanasia Tsatsi (Max Planck Institute for Astronomy) zkoumala se svými spolupracovníky galaxie, které se svým tvarem podobají vřetenu (anglicky spindle galaxy). Na základě průzkumu CALIFA (Calar Alto Legacy Integral Field spectroscopy Area survey) astronomové zjistili, že tyto štíhlé galaxie, které rotují podél své nejdelší osy, jsou ve vesmíru mnohem četnější, než se doposud předpokládalo. Nová data umožnila astronomům navrhnout model, jak tyto neobvyklé galaxie pravděpodobně vznikly, a to jako zvláštní typ vytvořený při splynutí dvou spirálních galaxií. Výsledky práce byly publikovány v časopise Astronomy & Astrophysics.

Úkolem dalekohledu Jamese Webba je odhalovat dosud neviděné detaily v různých oblastech vesmíru. Díky přelomovému vesmírnému dalekohledu vidíme první galaxie a podmínky, ve kterých vznikaly, pozorujeme protoplanetární disky vznikajících hvězd a vidíme i nové molekuly, které je tvoří a dosud nešly spatřit. Zkoumáme atmosféry exoplanet a můžeme detailně pozorovat planety Sluneční soustavy v dosud neviděném detailu v infračerveném oboru spektra. Právě uveřejněným snímkem Saturnu se uzavřelo snímání všech čtyř plynných obrů.

V mladém vesmíru přeměňovaly zářivé galaxie s bouřlivým vývojem doslova zběsilým tempem obrovské zásoby plynného vodíku na nové hvězdy. Zásoby vodíku se tedy logicky v průběhu času ztenčovaly. Z tohoto důvodu není jasné, jakým způsobem si dokázaly některé galaxie udržet vysoké tempo tvorby mladých hvězd i dlouho po svém vzniku.

V raném vesmíru, v první miliardě let jeho existence, byl mezigalaktický prostor neprůhledný. Nacházel se zde plyn, kterým vysokoenergetické fotony záření prvních hvězd nemohly proniknout. Po jedné miliardě let se však vesmír stal náhle průhledným. Vědci se snaží ověřit své hypotézy a dalekohled Jamese Webba se k tomu báječně hodí. Pozorování, která byla nyní učiněna ukazují, že hvězdy v prvních galaxiích zahřály okolní plyn. Nastalo období reionizace a následného zprůhlednění prostoru mezi galaxiemi.

Různé jevy napříč vesmírem emitují záření v celém rozsahu elektromagnetického spektra – od gama paprsků o vysokých energiích na jedné straně, které vznikají při nejenergetičtějších procesech v kosmu, až po mikrovlny a rádiové záření o nízkých energiích na straně druhé.

S deep fieldy se to mělo podobně jako s mnoha dalšími odvážnými nápady – vytáhly se během pauzy na kafe a ne všichni se hrnuli do jejich realizace. Naštěstí v týmu Hubbleova vesmírného dalekohledu zvítězila zvědavost nad opatrností a mnohahodinová expozice na první pohled prázdné části oblohy odhalila více než 1500 galaxií. V dalším díle Rozhovorů si povíme více o těchto nejhlubších snímcích vesmíru a taky o tom, co jsme se dozvěděli z prvního deep fieldu pořízeného Vesmírným dalekohledem Jamese Webba.

Titul Česká astrofotografie měsíce za červen 2017 obdržel snímek „Trojice galaxií v Draku“, jehož autorem je Jan K. Žehrovický.
Souhvězdí Draka nenalezne na obloze každý. A to je to přitom souhvězdí velmi velké, nebo spíše dlouhé, obtočené okolo Velké a Malé medvědice. Dokonce je viditelné po celý rok, je tedy cirkumpolární. Ke hvězdě Thuban, nejjasnější z celého souhvězdí, dokonce v době stavitelů velkých pyramid v Egyptě mířila zemská polární osa. Ta co nyní míří k Polárce.

Exoplaneta VHS 1256 b se nachází 40 světelných roků od Země a obíhá kolem dvou hvězd v souhvězdí Havrana (Corvus). Obíhá je ve vzdálenosti 4× větší než Neptun kolem Slunce, což astronomům hraje do karet, protože se světlo z hvězdy nemíchá se zářením exoplanety. Jeden oběh jí trvá přes 10 000 let. Již první výsledky naznačují výskyt pohybujících se křemičitanů, vody, oxidu uhelnatého a zřejmě i uhličitého v její atmosféře.

Vedci s použitím teleskopu NuSTAR (NASA) dokazujú, že v záverenčnej fáze zlučovania galaxií, padá do čiernej diery také množstvo plynu a prachu, ktoré je schopné zahaliť aj aktívne galaktické jadrá. Kombinácia gravitačných efektov dvoch galaxií spomaľuje rýchlosť otáčania plynu a prachu, ktoré by v opačnom prípade voľne obiehali. Táto strata energie spôsobuje, že materiál padá do čiernej diery.

V souhvězdí Šípu (Sagitta), zhruba 15 000 světelných let od Země, se nachází známá Wolfova-Rayetova hvězda WR 124, která byla zkoumána mimo jiné i Hubbleovým vesmírným dalekohledem. Nedávno se na ni také zaměřil největší teleskop ve vesmíru, JWST. Ten pomocí infračervených přístrojů NIRCam a MIRI poodhalil struktury rozsáhlé mlhoviny, vzdálené galaxie v pozadí a především předehru smrti masivní hvězdy – supernovy.

Vzájemná interakce galaxií v rámci galaktických kup je zdrojem nesčetných témat pro kvalitní výzkum. Pavel Jáchym z ASU, společně s kolegy ze zahraničních institucí, studoval plyn v galaxii D100 z kupy Coma v souhvězdí Vlasy Bereniky, jež za sebou nechává dlouhý a úzký ohon plynu, který byl dynamicky vytržen přímo z galaxie. Pozorování ukazují, že v tomto ohonu překvapivě převažuje molekulární plyn.

V tomto díle se vědec Univerzity Karlovy podrobněji pozastaví nad souvislostí vody a vesmíru okolo nás. Jak se procesy, např. při srážkách komet, projevují na Zemi, a co nám při tom odkrývá kinetická energie? Podíváme se dnes i na tunguzskou katastrofu.

Tím astronómov pod vedením Yoshikiho Matsuoka z National Astronomical Observatory v Japonsku (NAOJ) objavil veľké množstvo doposiaľ nepozorovaných galaxií a kvazarov s veľkým červeným posunom. Čerstvo nájdené objekty môžu byť veľmi dôležité pre naše pochopenie ranej etapy vývoja vesmíru. Zistenia boli publikované v apríli tohto roku na stránkach arXiv.org.

Vesmírný dalekohled Jamese Webba nalezl řadu zmrzlých látek v temném molekulárním oblaku v souhvězdí Chameleona. Tyto látky by se hypoteticky mohly stát i základními stavebními kameny života na planetách obíhajících kolem hvězd, které z tohoto oblaku vzniknou. Pro vznik života jsou ledy velmi důležité, protože obsahují řadu klíčových prvků, jako je uhlík, vodík, kyslík a síra.

Na začiatku 70-tych rokov 20. storočia na University of Wisconsin–Madison's Physical Sciences Laboratory, astrofyzik Ron Reynolds zamieril na oblohu špeciálne zostrojený spektrometer a objavil tak predtým neznámy prvok v Mliečnej dráhe. Všade kam sa pozrel pozoroval slabo červenú žiaru ionizovaného vodíka. Bol to prvý jasný dôkaz, že obrovské oblaky ionizovaných atómov vodíka – vodíka zbaveného elektrónov – prestupujú vesmír medzi hviezdami. „Nikto neočakával, že uvidí ionizovaný vodík uprostred ničoho,“ povedal v rozhovore v roku 2004. „Je to všade na oblohe, ale najjasnejšie práve v rovine galaxie.“

V posledních dnech nám dalekohled Jamese Webba nabízí doopravdy jeden objev za druhým. V tomto trendu pokračuje i nedávno zveřejněné pozorování prašného disku u nedaleké mladé hvězdy. Je to poprvé, co dalekohled Jamese Webba pozoroval dříve známý prašný disk na daných vlnových délkách v infračervené části spektra. Mimo jiné nám toto pozorování odhaluje možné složení tohoto disku a jeho vnitřní fungování.

Hubbleův kosmický teleskop HST byl vypuštěn 24. dubna 1990 na palubě raketoplánu Discovery a následujícího dne naveden na oběžnou dráhu kolem Země. Z jeho polohy vysoko nad zkreslujícím vlivem zemské atmosféry pozoruje HST okolní vesmír v oboru blízkého ultrafialového, viditelného a blízkého infračerveného záření. V průběhu uplynulých 27 let vedla pozorování HST k průlomovým objevům, které způsobily doslova revoluci v oblasti astronomie a astrofyziky.