Úvodní strana  >  Články  >  Ostatní  >  Experiment: rozbíjeli jsme “asteroid”

Experiment: rozbíjeli jsme “asteroid”

Rozbíjení cihly. Autor: Martin Florian
Rozbíjení cihly.
Autor: Martin Florian
Velikosti malých těles ve Sluneční soustavě nejsou rozděleny náhodně ani rovnoměrně. Menších je vždy větší počet než těch velkých. Závislost jejich počtu na velikosti můžeme popsat matematicky; pro většinu skupin malých objektů (planetky, prachové částice, meteoroidy, balvany na planetkách, velikosti kráterů, …) popisuje tuto závislost mocninná funkce. Na Astronomické expedici na hvězdárně v Úpici jsme experimentálně ověřili, že mocninnou distribuci mají i úlomky různých materiálů rozbitých kladivem.

V úvodu článku musíme čtenáře seznámit s trochou nezbytné matematiky. Mocninná funkce, popisující závislost velikosti těles (N) na jejich velikosti (D), má tvar

N = A . D α.

Rozbíjení opuky. Autor: Martin Florian
Rozbíjení opuky.
Autor: Martin Florian
Zatímco konstantou A se v tuto chvíli nemusíme zaobírat, důležitý je exponent α, který vyjadřuje „strmost“ rozdělení velikostí. Vyjadřuje tedy, jak prudce se zmenšujícím se rozměrem narůstá počet objektů. Tento exponent je pro objekty našeho zájmu záporný (jinak by počty rostly se zvětšujícími se rozměry, a ne naopak). Jak může vypadat mocninná funkce pro kladný a záporný exponent, vidíme na následujícím obrázku vlevo. Výhodnější je ovšem zobrazovat mocninné funkce v grafu, v němž jsou jednotky na osách zobrazeny nikoliv v lineárním, ale logaritmickém měřítku (viz následující obrázek vpravo). Mocninná závislost má totiž v takovém grafu tvar přímky, a její sklon je roven exponentu α. Tento fakt snadno odvodíme, když danou závislost zlogaritmujeme:

log N = A + α . log D.

Pokud na svislou osu vynášíme log N (označme jej y) a na vodorovnou osu log D (označme jej x), má uvedená závislost tvar přímky: y = A + α . x.

Ukázky mocninného rozdělení velikostí v grafu s osami v lineárním (vlevo) a logaritmickém (vpravo) měřítku. Autor: Petr Scheirich
Ukázky mocninného rozdělení velikostí v grafu s osami v lineárním (vlevo) a logaritmickém (vpravo) měřítku.
Autor: Petr Scheirich
Závislost N na D nazýváme odborně distribuční funkce. Rozlišujeme její dva typy:
  1. Kumulativní distribuční funkce N (>D), která udává počet všech objektů větších, než je daný průměr objektu D. V případě, že má mocninný charakter, zapíšeme ji jakoN (>D) ~ D n. (Vlnovkou ~ budeme v následujícím textu označovat přímou úměrnost, abychom se nemuseli zabývat konstantami, které obvykle na pravé straně rovnice stojí také).
  2. Diferenciální distribuční funkce dN / dD (D), která udává počet objektů dN, které mají rozměry v intervalu DD + dD. V případě, že má mocninný charakter, zapíšeme ji jako dN / dD ~ D α.

Exponenty obou typů distribučních funkcí jsme záměrně označili různě, protože nejsou stejné. Integrováním diferenciální distribuční funkce lze mezi nimi odvodit jednoduchý vztah, který využijeme v závěru článku:

α = n – 1.

Rozbíjení tvárnice. Autor: Martin Florian
Rozbíjení tvárnice.
Autor: Martin Florian
Na závěr matematického úvodu se zamysleme nad možností, že nemáme distribuci objektů podle jejich velikostí dN / dD, ale podle jejich hmotností

dN / dM ~ M s.

Jaký bude vztah mezi exponenty α a s? Využijeme faktu, že hmotnost je úměrná třetí mocnině rozměru, M ~ D3, a dosazením do vztahu pro dN / dD a využitím pravidel pro derivování získáme vztah

α = 3 . s + 2.

Tento vztah se pokusíme níže experimentálně ověřit.

Ve druhé části článku se podíváme na exponenty distribucí některých skupin malých objektů pozorovaných ve Sluneční soustavě. Řeč bude vždy o diferenciálních distribucích, uvádět tedy budeme exponent α.

  1. Planetky v hlavním pásu mezi Marsem a Jupiterem

    Velikostní rozdělení planetek v hlavním pásu mezi Marsem a Jupiterem. Upraveno podle [1]. Autor: Petr Scheirich
    Velikostní rozdělení planetek v hlavním pásu mezi Marsem a Jupiterem. Upraveno podle [1].
    Autor: Petr Scheirich
    Velikostní rozdělení planetek v hlavním pásu mezi Marsem a Jupiterem studovali například v práci [1], a vidíme jej na následujícím obrázku. Pro tělesa menší než 5 km je exponent diferenciálního rozdělení roven –2,3, pro tělesa větší než 5 km je exponent roven –4.

  2. Balvany na povrchu planetky Itokawa

    Exponent diferenciálního rozdělení velikostí balvanů na povrchu planetky Itokawa je podle [2] roven –4,1. Když autoři použili namísto středního rozměru balvanů jejich největší rozměr (tak jako my v našem experimentu), získali hodnotu exponentu –3,8. Rozdíl mezi těmito dvěma hodnotami (0,3) jsme použili také my pro úpravu zjištěných exponentů (viz níže).

  3. Meteoroidy

    Diferenciální distribuce velikostí meteoroidů má podle [3] hodnotu exponentu pro sporadické meteoroidy –4,0 a pro rojové meteoroidy –2,5.

  4. Fragmenty z asteroidu P/2010 A2

    Snímky planetky P/2010 A2 pořízené v roce 2010 pomocí HST. Zdroj: [4] Autor: HST
    Snímky planetky P/2010 A2 pořízené v roce 2010 pomocí HST. Zdroj: [4]
    Autor: HST
    Rozpad tohoto asteroidu (způsobený buď srážkou s jiným tělesem, nebo rychlou rotací) byl pozorován pomocí Hubbleova vesmírného dalekohledu v roce 2010. Podle [4] je hodnota exponentu diferenciální distribuce velikostí jeho fragmentů rovna –3,3.

  5. Částice v ohonu komety 67P/Čurjumov-Gerasimenko

    Velikosti částic v ohonu komety 67P/Čurjumov-Gerasimenko, budoucím cíli sondy Rosetta, zkoumali v práci [5]. Hodnota exponentu diferenciální distribuce velikostí částic se pohybuje mezi –2 a –4.

V poslední části článku se dostáváme k samotnému experimentu, prováděnému v rámci Astronomické expedice. Při něm jsme roztříštili kus cihly, tvárnice a opuky, a spočítali vzniklé fragmenty různých velikostí a hmotností. Uspořádání experimentu bylo jednoduché: na staré závaží z montáže dalekohledu, použité jako podložka, jsme položili testovaný vzorek, a jedním silným úderem velké palice jej rozbili na kusy.

Distribuční funkce pro rozměry a hmotnosti s lineárním měřítkem na osách.  Autor: Petr Scheirich
Distribuční funkce pro rozměry a hmotnosti s lineárním měřítkem na osách.
Autor: Petr Scheirich
U jednotlivých fragmentů jsme proměřili jejich největší rozměr a také je zvážili na digitální váze s přesností asi 0,03 g. Omezili jsme se při tom pouze na úlomky větší než 4 mm. Pokud není fragmentů opravdu velké množství, je vždy jednodušší sestavovat jejich kumulativní distribuční funkci, což jsme učinili i v našem případě. Tyto distribuční funkce jsou zvlášť pro rozměry a zvlášť pro hmotnosti znázorněny na následujícím obrázku, který je kvůli lepší představě o přibývajících počtech se zmenšujícími se rozměry zobrazen s lineárním měřítkem na osách. Body v grafu určují počet fragmentů větších nebo hmotnějších, než hodnota na ose x. Naměřené body jsou proloženy mocninnou funkcí.

Distribuční funkce pro rozměry a hmotnosti s logaritmickým měřítkem na osách. Autor: Petr Scheirich
Distribuční funkce pro rozměry a hmotnosti s logaritmickým měřítkem na osách.
Autor: Petr Scheirich
Na dalším obrázku jsou tytéž distribuce zobrazené s logaritmickým měřítkem na osách. Mocninné funkce se při této volbě os zobrazí jako přímky. Pro každou proloženou závislost je zobrazen i její funkční předpis, u nějž nás nejvíce zajímá hodnota exponentu, která udává sklon přímky.

Protože jsme sestrojovali kumulativní distribuce, je třeba od jejich exponentů pro porovnání s exponenty uváděnými výše pro objekty ve Sluneční soustavě (vždy pro diferenciální distribuce) odečíst hodnotu 1,0. Následující tabulka tedy uvádí exponenty kumulativních distribucí velikostí (n) a hmotností (g) a exponenty diferenciálních distribucí (α, s). Také jsou v ní pro porovnání zopakovány výše uváděné exponenty pro objekty Sluneční soustavy.

velikosti: n= hmotnosti: g=
Cihla: –1,87 –0,66
Tvárnice: –1,33 –0,46
Opuka: –1,63 –0,59
velikosti: α= hmotnosti: s=
Cihla: –2,87 (–3,17) –1,66
Tvárnice: –2,33 (–2,63) –1,46
Opuka: –2,63 (–2,93) –1,59
Hodnoty v závorkách jsou na základě studia balvanů na povrchu Itokawy opraveny o faktor 0,3, což lépe odpovídá rozdělení středních rozměrů namísto maximálních rozměrů fragmentů.

Planetky v hlavním pásu D<5 km: α=–2,3
Planetky v hlavním pásu D>5 km: α=–4
Meteoroidy sporadické: α=–4
Meteoroidy rojové: α=–2,5
Balvany na Itokawě: α=–4,1
Rozpad planetky: α=–3,3
Částice v ohonu komety: α=–2 až –4

Na závěr ověříme, jak dobře v našem experimentu platí vztah α = 3 . s + 2. V tabulce níže jsou uvedeny naměřené hodnoty velikostního exponentu α a tytéž hodnoty vypočtené z hmotnostního exponentu s. Vidíme, že výsledky celkem odpovídají.

α 3 . s + 2
Cihla: –2,87 (–3,17) –2,98
Tvárnice: –2,33 (–2,63) –2,38
Opuka: –2,63 (–2,93) –2,76

Reference:

[1] Ž. Ivezić a kol. 2001, Solar System Objects Observed in the Sloan Digital Sky Survey Commisioning data. The Astronomical Journal, 122, 2749.
[2] T. Michikami a kol. 2008, Size-frequency statistics of boulders on global surface of asteroid 25143 Itokawa. Earth Planets Space, 60, 13
[3] Z. Ceplecha a kol. 1998, Meteor Phenomena and Bodies. Space Science Reviews, 84, 327
[4] D. Jewitt a kol. 2010, A recent disruption of the main-belt asteroid P/2010 A2. Nature, 467, 817
[5] J. Agarwall a kol. 2010, The dust trail of Comet 67P/Churyumov-Gerasimenko between 2004 and 2006. Icarus, 207, 992




Seriál

  1. Astronomická expedice 2024 – Staň se na 15 dní astronomem!
  2. Malé ohlédnutí za Astronomickou expedicí 2023
  3. Pozvánka - Astronomická expedice 2023
  4. Astronomická expedice 2022
  5. Pozvánka – Astronomická expedice 2022
  6. Astronomická expedice v Sítinách 2021
  7. Jaká byla Astronomická expedice 2020?
  8. Pozvánka - Astronomická expedice 2020
  9. Pozvánka - Astronomická expedice Úpice 2019
  10. Pozvánka - Astronomická expedice Úpice 2018
  11. Zahráli jsme si na oděvní návrháře a vyzkoušeli kyanotypii – historickou fotografickou techniku
  12. Astronomická expedice Úpice 2017 - nejlepších 16 dnů v roce
  13. Hon na Mezinárodní vesmírnou stanici
  14. Astronomická expedice 2017
  15. Lampička pro astronomy se superkondenzátorem
  16. Astronomická expedice: Modely raket
  17. Astronavigace na Astronomické expedici
  18. Experiment: rozbíjeli jsme “asteroid”
  19. Toužíte po letním dobrodružství? Pojeďte s námi na Astronomickou expedici!
  20. Astronomická expedice 2015
  21. Astronomická expedice Úpice 2014
  22. Astronomická expedice 2013
  23. Astronomická expedice 2012
  24. Astronomická expedice 2009 - Procestujte Galaxii
  25. Astronomická expedice 2008 – Mezi nebem a Zemí
  26. Astronomická expedice 2007 - Vaše cesta do vesmíru
  27. Astronomická expedice 2005 - Vesmír v hrsti
  28. Astronomická expedice - Váš první kontakt s vesmírem
  29. Astronomická expedice Úpice


O autorovi



17. vesmírný týden 2024

17. vesmírný týden 2024

Přehled událostí na obloze a v kosmonautice od 22. 4. do 28. 4. 2024. Měsíc bude v úplňku, meteorů z roje Lyrid proto mnoho neuvidíme. Slunce je pokryto hezkými malými skvrnami, které byly v nejaktivnější oblasti viditelné i okem přes patřičný filtr. Kometa 12P/Pons-Brooks už pozorovatelná není a jakmile to svit Měsíce umožní, nabídne obloha jen několik slabších komet. SpaceX letos uskutečnila už 40. start Falconu 9 a při příštím startu očekáváme už 300. přistání prvního stupně této rakety. Komunikace s helikoptérou Ingenuity již nebude možná, Perseverance jede pryč za dalšími výzkumem povrchu Marsu. Před 250 lety se narodil anglický astronom Francis Baily.

Další informace »

Česká astrofotografie měsíce

ic2087

Titul Česká astrofotografie měsíce za březen 2024 obdržel snímek „IC 2087“, jehož autorem je Zdeněk Vojč     Souhvězdí Býka je plné zajímavých astronomických objektů. Tedy fakticky ne toto souhvězdí, ale oblast vesmíru, kterou nám na naší obloze souhvězdí Býka vymezuje. Najdeme

Další informace »

Poslední čtenářská fotografie

Slunce

Slunce v H-alfa Jindřichův .Hradec

Další informace »