Sluneční soustava

Meteority s rodokmenem představují zcela ojedinělé sondy umožňující mapovat geologické složení i minulost Sluneční soustavy. Jiří Borovička vedl tým, který analyzoval záznamy denního bolidu zachyceného v roce 2019 především nad územím Holandska a Německa, jež vyústil v pád velmi neobvyklého uhlíkatého bolidu.

První dva snímky pořízené 7. června 2021 sondou NASA s názvem Juno při průletu kolem obřího měsíce planety Jupiter – kolem Ganymedu – byly úspěšně přijaty na Zemi. Pořízené fotografie – jedna pomocí kamery JunoCam na palubě sondy a druhá pomocí navigační kamery Stellar Reference Unit (SRU) – ukazují povrch měsíce v pozoruhodných detailech včetně kráterů, zřetelně odlišného tmavého a světlého terénu a dlouhých strukturálních útvarů pravděpodobně spojených s tektonickými zlomy.

Astronomové využívající soustavu radioteleskopů ALMA (Atacama Large Millimeter/submillimeter Array) vytvořili detailní mapu intenzity a množství plynného kyanovodíku ve svrchní stratosféře Neptunu, osmé a nejvzdálenější planety od Slunce známé v naší planetární soustavě.

Výzkumníci modelovali podmínky nezbytné pro unikátní magnetické pole Saturnu. Nové simulace uskutečněné na Johns Hopkins University poskytují netušený pohled do nitra planety Saturn, z kterých vyplývá, že tlustá vrstva héliového deště by mohla ovlivňovat magnetické pole planety.

Každý rok na naši planetu dopadá prach z komet a asteroidů. Tyto meziplanetární prachové částice prolétají naší atmosférou a dávají vzniknout úkazům lidově označovaným jako „padající hvězda“. Některé z nich dosáhnou zemského povrchu v podobě mikrometeoritů.

Rozsáhlý český tým odborníků studoval meteorický déšť roje Drakonid v roce 2018. Dvojstaniční pozorování prováděná celou varietou přístrojů umožnila určit pro tento roj množství základních popisných parametrů a konfrontovat reálná pozorování s předpověďmi založenými na minulé aktivitě.

Možná až 99 % vody je na Marsu stále ještě uvězněno v kůře rudé planety – neunikla do kosmického prostoru, jak se dlouho spekulovalo. Nová data změnila dlouho převládající teorii, že téměř veškerá voda unikla z planety Mars do kosmického prostoru. Před miliardami roků byl Mars skoro modrou planetou; v souladu s důkazy stále ještě nalézanými na povrchu, hojné množství vody teklo napříč planetou a vytvářelo četné rezervoáry – jezera, moře i hluboký oceán. Otázkou je, kam se veškerá voda poděla?

V následujících týdnech máme možnost vidět kometu i za pomocí malých dalekohledů. Kometa s označením C/2020 R4 (ATLAS) je těchto dnech pozorovatelná na ranní obloze, v průběhu dubna se bude její viditelnost zlepšovat.

Mezinárodní tým vědců studujících seismická data shromážděná sondou NASA s názvem InSight využil pořízená data k výpočtu velikosti jádra planety Mars. Skupina plánovala projednat své zjištění na letošní konferenci Lunar and Planetary Science Conference, která se konala virtuálně v důsledku probíhající pandemie. Jako předehru k této konferenci člen výzkumného týmu Simon Stähler vytvořil dostupnou předběžnou prezentaci pro ty, kdo by měli o data zájem. Astronomové zamýšlejí publikovat své závěry v blízké budoucnosti ve vědeckém časopisu.

Astrofyzikální proGResy z Opavy: V pondělí 5. dubna 2021 publikovala Asociace univerzit pro výzkum vesmíru NASA jako prestižní Geovědecký snímek dne fotografii s názvem „Obarvené Einsteinovo zatmění“, jehož spoluautory jsou Petr Horálek z Fyzikálního ústavu v Opavě a prof. Miloslav Druckmüller z Vysokého učení technického v Brně. S využitím moderních výpočetních metod zpracování obrazu se pokusili „oživit“ snímek zatmění Slunce z 29. května 1919, který vedl k potvrzení Einsteinovy obecné teorie relativity. Lidé tak po více jako 100 letech mohou poprvé zhlédnout, jak tento úkaz vypadal v barvách a jaké nezvyklé jevy obklopovaly zakryté Slunce.

Nová pozorování provedená pomocí dalekohledu ESO/VLT naznačují, že ‚toulavá‘ kometa 2I/Borisov – druhý a zatím poslední známý objekt, který prokazatelně přilétl do Sluneční soustavy z mezihvězdného prostoru – je složena z nejméně přetvořeného materiálu, jaký byl kdy pozorován. Astronomové se domnívají, že toto těleso pravděpodobně nikdy neprošlo blízko hvězdy a představuje tak pozůstatek nedotčené hmoty z oblaku plynu a prachu, ve kterém se zrodilo.

Astronomové použili Hubbleův vesmírný teleskop HST k pozorování Saturnu, druhé největší planety Sluneční soustavy, a to v letech 2018, 2019 a 2020 hned po tom, co na severní polokouli panovalo období kolem letního slunovratu. Tato pozorování jsou součástí programu OPAL (Outer Planets Atmospheres Legacy). Saturn je šestou planetou od Slunce a obíhá ve vzdálenosti 1,4 miliardy kilometrů. Jeden oběh vykoná za 29 pozemských roků. Za tu dobu se na jeho povrchu vystřídají roční období, přičemž jedno období trvá o něco déle než 7 roků.

1I/´Oumuamua, podivný objekt původem mimo Sluneční soustavu, byl objeven 19. října 2017 pomocí dalekohledu Pan-STARRS 1 jako malé velmi protáhlé těleso, avšak velmi jasné. Jeho odrazivost byla přibližně stejná jako u povrchu Pluta a Tritonu, jež jsou pokryty různými exotickými ledy. Dvojice astrofyziků z Arizona State University (ASU) prozkoumala několik rozmanitých ledů. Zjistili, že povrch tělesa 1I/´Oumuamua nejlépe odpovídá ledu dusíku, který by vysvětlil mnoho věcí, které výzkumníci vědí o tomto mezihvězdném poutníku. Astronomové rovněž předpokládají, že objekt ´Oumuamua byl pravděpodobně vymrštěn z mladé planetární soustavy zhruba před půl miliardou roků.

Vědecká pojízdná laboratoř NASA s názvem Perseverance (Vytrvalost), která byla vypuštěna k Marsu 30. 7. 2020, zahájila 18. 2. 2021 přímo z příletové dráhy (bez navedení na parkovací oběžnou dráhu) přistávací manévr s cílem dosednout v oblasti kráteru Jezero. Přistávací manévr proběhl úspěšně, když „létající jeřáb“ posadil rover Perseverance poblíž předpokládaného místa jako doposud nejtěžší výzkumné zařízení na povrchu Marsu (hmotnost 1 025 kg).

Pomocí radioteleskopu ALMA, jehož evropským partnerem je ESO, se týmu astronomů podařilo poprvé přímo změřit rychlost větru ve středních vrstvách atmosféry planety Jupiter. Na základě studia chemických pozůstatků po dopadu komety do atmosféry planety na začátku 90. let 20. století vědci zjistili, že se v této vrstvě atmosféry Jupiteru vyskytuje extrémně silné proudění, jehož rychlost v blízkosti pólů dosahuje až 1 450 km za hodinu. Ve Sluneční soustavě se tak jedná o zcela unikátní extrémní meteorologický systém.

Astronomický ústav AV ČR je zapojen do projektu realizace nového Evropského slunečního dalekohledu s průměrem zrcadla 4 metry. Na projektu se podílí 26 výzkumných institucí z 18 zemí. Stejně jako jiné obří projekty, i zde se řeší řada technických výzev, které přispívají k rozvoji např. optických a kamerových systémů. Nedílnou součástí projektu EST je i popularizace sluneční fyziky a díky tomu vznikly dva soubory nazvané Knihy úkolů. Cílem je seznámit mladší zájemce o vědu se sluneční fyzikou - postavme si spektroskop; jak na sluneční rotaci atd. Úkoly jsou rozděleny věkově do tří kategorií: starší než 10, 12 a 16 let.

Planetka s přezdívkou „Farfarout“ a s oficiálním předběžným označením 2018 AG37 má potvrzenou velmi protáhlou oběžnou dráhu, na které se dostává do vzdálenosti 175 AU (astronomických jednotek) v době, kdy je nejdále od Slunce. Na druhé straně se dostává dovnitř dráhy planety Neptun, a to na vzdálenost 27 AU, když je Slunci nejblíže. Jeho průměrná vzdálenost od Slunce je 132 AU; pro porovnání: Pluto obíhá kolem Slunce v průměrné vzdálenosti 39 AU. Těleso označené 2018 AG37 obdrží oficiální pojmenování – podobně jako Sedna a další podobné objekty – později, až budou v průběhu příštích několika roků jejich dráhy lépe určeny.

Vnitřní terestrické planety se vytvořily nejdříve, zdědily podstatné množství radioaktivního hliníku 26Al a tudíž se roztavily, vytvořily železné jádro a velmi rychle se zbavily plynu v podobě velkého množství jejich prvotních těkavých látek. Planety ve vnějších oblastech Sluneční soustavy zahájily akreci později a kromě toho s menším množstvím radiogenního ohřevu, a proto si udržely převahu zpočátku jimi soustředěných těkavých látek.

Osa zemského tělesa nesměřuje vůči vzdálenému referenčnímu systému ani vůči zemskému tělesu stále ve stejném směru. Vykonává množství pohybů. Některé z těchto pohybů jsou periodické, jiné ne. Jan Vondrák a Cyril Ron z ASU studovali důležitost vlivu některých excitačních mechanismů, které se na změně rotační osy podílejí.

Tento kompozitní snímek ukazuje horkou skvrnu v atmosféře planety Jupiter. Na fotografii v levé části připojeného obrázku, pořízené 16. září 2020 pozemním dalekohledem Gemini North Telescope, Mauna Kea, Havajské ostrovy, se horká skvrna jeví velmi jasná v oboru infračerveného záření na vlnové délce 5 mikronů. Vložený obrázek vpravo pořídila kamera JunoCam na palubě sondy NASA s názvem Juno v oboru viditelného světla rovněž 16. září 2020 v průběhu 29. těsného průletu kolem Jupitera. Zde se horká skvrna jeví naopak docela tmavá.