Sluneční soustava

Kometa C/2019 Y4 (ATLAS) prolétající v blízkosti Slunce je prvním členem skupiny dlouhoperiodických komet pozorovaných při rozpadu již dříve během jejich nejmenšího přiblížení ke Slunci. Na základě použití snímků získaných pomocí Hubbleova vesmírného teleskopu HST během pozorovací kampaně astronomové identifikovali dvě skupiny fragmentů vzniklých v důsledku kometární dezintegrace v roce 2020. C/2019 Y4 (ATLAS) byla kometou s téměř parabolickou dráhou a s oběžnou periodou zhruba 6 tisíc roků.

V noci z 31. augusta 2021 na 1. septembra 2021 nastane maximum zaujímavého meteorického roja alfa Aurigidy. Roj sa vyznačuje veľmi premenlivou aktivitou s pomerne vysokým zastúpením jasných bolidov. Alfa Aurigidy sú aktívne každoročne, avšak ich ZHR je málokedy vyššia ako 9 meteorov za hodinu. Radiant roja leží neďaleko jasnej a známej hviezdy Capella, ktorú nájdeme v súhvezdí Povozník.

Vědci se pustili do odhalování tajemství vzácného meteoritu a hledání možného původu oceánů a života na Zemi, a to díky finanční podpoře Science and Technology Facilities Council (STFC). Výzkum meteoritu, který spadl ve Spojeném království (Velké Británii) počátkem letošního roku, napovídá, že stáří tohoto vesmírného kamene spadá až do období vzniku Sluneční soustavy před 4,5 miliardami roků. Meteorit byl nyní oficiálně klasifikován díky částečné studii vzorku financované STFC.

Dňa 18.08.2021 nastane maximum meteorického roja Kappa Cygnidy. Tento roj patrí k tým slabším, jeho ZHR dosahuje iba 3 meteory za hodinu. Roj je v činnosti od 3. 8. do 25. 8. Tento roj je známy tým, že sa mu občas podarí "vyrobiť" nejaký ten veľmi jasný bolid. Materským telesom roja je asteroid 2008ED69, ktorý je potomkom rozpadu väčšieho telesa, ktoré sa rozpadlo pred približne 4000 až 6000 rokmi.

Jupiterův ledový satelit Ganymed je největším měsícem ve Sluneční soustavě. Vodní led na jeho povrchu je zmrazený v důsledku nízkých teplot až na −185 stupňů Celsia. Déšť nabitých částic ze Slunce (sluneční vítr) dostatečuje k tomu, že kolem pravého poledne na Ganymedu se led změní ve vodní páru. Důkazy o existenci slabé atmosféry tohoto měsíce tvořené vodní parou získali výzkumníci planet díky spektrům s vysokou citlivostí získaných pomocí Hubbleova vesmírného teleskopu (HST).

Při použití spektrografu NIRSPEC (Near-Infrared Spectrograph) instalovaného na dalekohledu Keck II astronomové prováděli spektroskopická pozorování v oboru blízkého infračerveného záření hyperaktivní komety 46P/Wirtanen v průběhu jejího dlouho očekávaného blízkého průletu kolem Země v prosinci 2018. Kometu objevil v lednu 1948 americký astronom Carl Wirtanen. Vlasatice je členem Jupiterovy rodiny komet.

Analýza 260 miliónů roků trvání hlavních geologických událostí vedla k odhalení opakujících se období dělících od sebe v průměru 27,5 miliónu roků. Geologická aktivita na Zemi se objevuje v opakujícím se cyklu 27,5 miliónu roků, což dodává planetě jakousi „pulzaci“. Vyplývá to z nové studie publikované v časopise Geoscience Frontiers.

Jasně bílá oblast na připojeném úvodním obrázku představuje ledovou polární čepičku pokrývající oblast v okolí jižního pólu Marsu. Je složená ze zmrzlé vody a z tuhého oxidu uhličitého. Evropská sonda Mars Express vyfotografovala tuto oblast 17. prosince 2012 v infračerveném, zeleném a modrém světle pomocí kamery High Resolution Stereo Camera (HRSC). Nová publikace popisuje radarové záznamy, z kterých vyplývá přítomnost podpovrchových „jezer“, avšak mnoho z nich je v oblastech příliš studených, než aby zde mohla voda zůstávat v kapalném stavu.

Meteority s rodokmenem představují zcela ojedinělé sondy umožňující mapovat geologické složení i minulost Sluneční soustavy. Jiří Borovička vedl tým, který analyzoval záznamy denního bolidu zachyceného v roce 2019 především nad územím Holandska a Německa, jež vyústil v pád velmi neobvyklého uhlíkatého bolidu.

První dva snímky pořízené 7. června 2021 sondou NASA s názvem Juno při průletu kolem obřího měsíce planety Jupiter – kolem Ganymedu – byly úspěšně přijaty na Zemi. Pořízené fotografie – jedna pomocí kamery JunoCam na palubě sondy a druhá pomocí navigační kamery Stellar Reference Unit (SRU) – ukazují povrch měsíce v pozoruhodných detailech včetně kráterů, zřetelně odlišného tmavého a světlého terénu a dlouhých strukturálních útvarů pravděpodobně spojených s tektonickými zlomy.

Astronomové využívající soustavu radioteleskopů ALMA (Atacama Large Millimeter/submillimeter Array) vytvořili detailní mapu intenzity a množství plynného kyanovodíku ve svrchní stratosféře Neptunu, osmé a nejvzdálenější planety od Slunce známé v naší planetární soustavě.

Výzkumníci modelovali podmínky nezbytné pro unikátní magnetické pole Saturnu. Nové simulace uskutečněné na Johns Hopkins University poskytují netušený pohled do nitra planety Saturn, z kterých vyplývá, že tlustá vrstva héliového deště by mohla ovlivňovat magnetické pole planety.

Každý rok na naši planetu dopadá prach z komet a asteroidů. Tyto meziplanetární prachové částice prolétají naší atmosférou a dávají vzniknout úkazům lidově označovaným jako „padající hvězda“. Některé z nich dosáhnou zemského povrchu v podobě mikrometeoritů.

Rozsáhlý český tým odborníků studoval meteorický déšť roje Drakonid v roce 2018. Dvojstaniční pozorování prováděná celou varietou přístrojů umožnila určit pro tento roj množství základních popisných parametrů a konfrontovat reálná pozorování s předpověďmi založenými na minulé aktivitě.

Možná až 99 % vody je na Marsu stále ještě uvězněno v kůře rudé planety – neunikla do kosmického prostoru, jak se dlouho spekulovalo. Nová data změnila dlouho převládající teorii, že téměř veškerá voda unikla z planety Mars do kosmického prostoru. Před miliardami roků byl Mars skoro modrou planetou; v souladu s důkazy stále ještě nalézanými na povrchu, hojné množství vody teklo napříč planetou a vytvářelo četné rezervoáry – jezera, moře i hluboký oceán. Otázkou je, kam se veškerá voda poděla?

V následujících týdnech máme možnost vidět kometu i za pomocí malých dalekohledů. Kometa s označením C/2020 R4 (ATLAS) je těchto dnech pozorovatelná na ranní obloze, v průběhu dubna se bude její viditelnost zlepšovat.

Mezinárodní tým vědců studujících seismická data shromážděná sondou NASA s názvem InSight využil pořízená data k výpočtu velikosti jádra planety Mars. Skupina plánovala projednat své zjištění na letošní konferenci Lunar and Planetary Science Conference, která se konala virtuálně v důsledku probíhající pandemie. Jako předehru k této konferenci člen výzkumného týmu Simon Stähler vytvořil dostupnou předběžnou prezentaci pro ty, kdo by měli o data zájem. Astronomové zamýšlejí publikovat své závěry v blízké budoucnosti ve vědeckém časopisu.

Astrofyzikální proGResy z Opavy: V pondělí 5. dubna 2021 publikovala Asociace univerzit pro výzkum vesmíru NASA jako prestižní Geovědecký snímek dne fotografii s názvem „Obarvené Einsteinovo zatmění“, jehož spoluautory jsou Petr Horálek z Fyzikálního ústavu v Opavě a prof. Miloslav Druckmüller z Vysokého učení technického v Brně. S využitím moderních výpočetních metod zpracování obrazu se pokusili „oživit“ snímek zatmění Slunce z 29. května 1919, který vedl k potvrzení Einsteinovy obecné teorie relativity. Lidé tak po více jako 100 letech mohou poprvé zhlédnout, jak tento úkaz vypadal v barvách a jaké nezvyklé jevy obklopovaly zakryté Slunce.

Nová pozorování provedená pomocí dalekohledu ESO/VLT naznačují, že ‚toulavá‘ kometa 2I/Borisov – druhý a zatím poslední známý objekt, který prokazatelně přilétl do Sluneční soustavy z mezihvězdného prostoru – je složena z nejméně přetvořeného materiálu, jaký byl kdy pozorován. Astronomové se domnívají, že toto těleso pravděpodobně nikdy neprošlo blízko hvězdy a představuje tak pozůstatek nedotčené hmoty z oblaku plynu a prachu, ve kterém se zrodilo.

Astronomové použili Hubbleův vesmírný teleskop HST k pozorování Saturnu, druhé největší planety Sluneční soustavy, a to v letech 2018, 2019 a 2020 hned po tom, co na severní polokouli panovalo období kolem letního slunovratu. Tato pozorování jsou součástí programu OPAL (Outer Planets Atmospheres Legacy). Saturn je šestou planetou od Slunce a obíhá ve vzdálenosti 1,4 miliardy kilometrů. Jeden oběh vykoná za 29 pozemských roků. Za tu dobu se na jeho povrchu vystřídají roční období, přičemž jedno období trvá o něco déle než 7 roků.